DOI QR코드

DOI QR Code

Preparation of Visible-light Responsive TiO2:Zr, N Photocatalysts by Polymer Complex Solution Method and Photo-degradation of NO

복합고분자용액법에 의한 가시광에 반응하는 TiO2:Zr, N 광촉매의 제조 및 NO 광분해 특성

  • Choi, Jae-Young (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Kim, Ji-Young (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Cho, Young-Hyuek (Department of Environmental Engineering, Kumoh National Institute of Technology) ;
  • Jang, Hee-Dong (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Chang, Han-Kwon (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Byoung-Gon (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim, Tae-Oh (Department of Environmental Engineering, Kumoh National Institute of Technology)
  • 최재영 (금오공과대학교 환경공학과) ;
  • 김지영 (금오공과대학교 환경공학과) ;
  • 조영혁 (금오공과대학교 환경공학과) ;
  • 장희동 (한국지질자원연구원 자원활용소재연구부) ;
  • 장한권 (한국지질자원연구원 자원활용소재연구부) ;
  • 김병곤 (한국지질자원연구원 자원활용소재연구부) ;
  • 김태오 (금오공과대학교 환경공학과)
  • Published : 2008.02.28

Abstract

Visible-light responsive $TiO_2$:Zr, N powders were prepared by polymer complex solution method and the particle properties were characterized by using transmission electron microscope, BET method, X-ray diffractometer and UV-Vis spectrophotometer. The photocatalytic reactivity of the catalysts was also estimated by analyzing NO degradation. Polyhedral $TiO_2$ powder having about 20 um in the average particle diameter was successfully prepared, The XRD analysis revealed that the as-prepared powder consisted of anatase and rutile phases. The light absorption of the as-prepared $TiO_2$:Zr, N powder was shifted to the visible light. In addition, the as-prepared $TiO_2$:Zr, N nanoparticles showed the higher photocatalytic activity than the commercial $TiO_2$ under both UV and visible lights.

Keywords

References

  1. M. Kaneko: Photocatalysis Science and Technology, I. Okura(Ed.), Springer-Verlag, New York (2002) 223
  2. A. Fuerte, M. D. Hernndez-Alonso, A. J. Maria, A. Martnez-Arias, M. Fernndez-Garca, J. C. Conesa, J. Soria, and G. Munuera: J. Catal., 212 (2002) 1-9 https://doi.org/10.1006/jcat.2002.3760
  3. H. D. Chun: J. Kor. Soc. Environ. Eng., 16(7) (1994) 809-818 (Korea)
  4. B. A. Roe and A. T. Lemley: J. Environ. Sci. Health. B, 32 (1997) 261-281 https://doi.org/10.1080/03601239709373085
  5. X. Fu, L.A. Clark, Q. Yang and M. A. Anderson: Environ. Sci. Tech., 30 (1996) 647-653 https://doi.org/10.1021/es950391v
  6. C. Wu, X. Zhao, Y. Ren, Y. Yue, W. Hua, Y. Cao, Y. Tang and Z. Gao: J. Mol. Catal. A., 229 (2005) 233-239 https://doi.org/10.1016/j.molcata.2004.11.029
  7. S. Sato: Chem. Phys. Lett., 123 (1986) 126-128 https://doi.org/10.1016/0009-2614(86)87026-9
  8. T. Ibusuki and K. Takeuchi: J. Mol. Cat., 88 (1994) 93-102 https://doi.org/10.1016/0304-5102(93)E0247-E
  9. Z. Toth, P. Penzeli and E. Posan: React. Kinet. Catal. Lett., 56 (1995) 185-190 https://doi.org/10.1007/BF02066966
  10. Y. Hori, K. Fujimoto and S. suzuki: Chem. Lett., 15 (1986) 1845-1848 https://doi.org/10.1246/cl.1986.1845
  11. N. Cant and J. Cole: J. Catal., 134 (1992) 317-330 https://doi.org/10.1016/0021-9517(92)90231-6
  12. P. Pichat, J. M. Herrmann, J. Disdie, and M. N. Mozzanega: Can. J. Chem. Eng., 60 (1982) 27-32 https://doi.org/10.1002/cjce.5450600106
  13. J. W. Jang, Y. G. Jung and T. O. Kim: J. Korean Power Metall. Inst., 12(4) (2005) 249-254 (Korea) https://doi.org/10.4150/KPMI.2005.12.4.249