DOI QR코드

DOI QR Code

Development of Molecular Marker to Distinguish Octopus minor Sasaki Caught in Korea and that in China

한국산과 중국산 낙지구별을 위한 DNA 마커

  • 김주일 (국립수산과학원 남해수산연구소) ;
  • 오택윤 (국립수산과학원 남해수산연구소) ;
  • 양원석 (국립수산과학원 남해수산연구소) ;
  • 조은섭 (국립수산과학원 남해수산연구소)
  • Published : 2008.02.28

Abstract

Octopus minor (O. minor) is widely distributed along the coastal regions of Korea, but most of them are caught in southern waters which are associated with one of the important fisheries stock. At present, O. minor from China has been introduced to the fishery markets in Korea. Here, we attempt to discriminate their origin for Korea or China using molecular techniques. Based on the O. minor mitochondrial DNA sequence, we developed a PCR-based origin discrimination system. The assay specificity was assessed by testing four individuals of O. minor from Sangdong, China, as well as 20 additional O. minor from Namhae, Muan, Yeosu and Jindo, Korea. Only four isolates of O. minor originated from China tested as positive in our distinction system. All PCR-positive products yielded identical sequences from Chinese O. minor, whereas Korean O. minor appeared to be PCR amplification. This result suggested that the primers used in this study are O. minor species specific, especially originated from China. The detection system appeared to be positive results in the use of 0.1 ng of Chinese O. minor DNA as template, however, the Korean O. minor even using $1{\mu}g$ of DNA showed no amplification. Consequently, the assay provides a simple, rapid and accurate method for the detection of Chinese O. minor.

낙지는 우리나라 연안에 대부분 서식하는 종으로 특히 남해안 연안에서 많이 어획되고 있는 종이다. 현재, 중국산 낙지가 우리나라 수산시장에 많이 수입되고 있는 관계로 본 연구에서는 분자마커를 이용하여 한국산과 중국산 낙지를 구별하기 위하여 조사했다. 유전자 증폭을 이용하여 중국 산동지역에 서식하고 있는 낙지 4마리에 대하여 PCR 생성물이 보인 반면에, 남해, 무안, 여수, 진도에 서식하고 있는 낙지 미토콘드리아 DNA는 나타나지 않았다. 따라서 PCR 증폭으로 국내산 $1{\mu}g$ DNA 첨가 시 중국산 0.1 ng DNA까지 민감도를 보여, 앞으로 간편하고 신속한 중국산 낙지 구별을 위하여 좋은 도구로 이용될 것으로 보인다.

Keywords

References

  1. Boyle, P. R. and D. Knobloch. 1982. On growth of the Octopus eledone Cirrhosa. J. Mar. Biol. Ass. U.K. 62, 277-296 https://doi.org/10.1017/S0025315400057283
  2. Folmer, O., M. Black, W. Hoeh, R. Lutz and R. Vrjenhoek. 1994. DNA primers for amplification of mitochondrial cytochromec oxidase subunit II from diverse metazoan invertebrates. Mol. Mar. Bio. Biotec. 3, 294-299
  3. Hernandez-Garcia, V., J. L. Herandez-Lopez and J. J. Castro-Hdez. 2002. On the reproduction of Octopus vulgaris off the coast of the Canary Islands. Fish. Res. 57, 197-203 https://doi.org/10.1016/S0165-7836(01)00341-1
  4. Jung, J. M. and D. S. Kim. 2001. Influence of sea condition on catch fluctuation of long line for common octopus, Octopus variddilis in the coastal waters of Yeosu. Bull. Kor. Soc. Fish. Tech. 37, 321-325
  5. McQuaid, C. D. 1994. Feeding behaviour and selection of bivalve prey by Octopus vulgaris Cuvier. J. Exp. Mar. Biol. Ecol. 177, 187-202 https://doi.org/10.1016/0022-0981(94)90236-4
  6. Quetglas, A., M. Gonzalez, A. Carbonell and P. Sanchez. 2001. Biology of deep-sea octopus Bathyoplypus sponsalis (Cephalopoda: Octopodidae) from the western Mediterranean Sea. Mar. Biol. 138, 785-792 https://doi.org/10.1007/s002270000495
  7. Quetglas, A., M. Gonzalez and I. Franco. 2005. Biology of the upper-slope cephalopod Octopus salutii from the western Mediterranean Sea. Mar. Biol. 146, 1131-1138 https://doi.org/10.1007/s00227-004-1522-4
  8. Smale, M. J. and P. R. Buchan. 1981. Biology of Octopus vulgaris off the east coast of South Africa. Mar. Biol. 65, 1-12 https://doi.org/10.1007/BF00397061
  9. Thompson, J. D., D. G. Higgins and T. J. Gibson. 1994. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specifiv gap penalties and weight matrix choice. Nucl. Acids Tes. 22, 4673-4680 https://doi.org/10.1093/nar/22.22.4673

Cited by

  1. The Pulation Structure of the Pacific Cod (Gadus macrocephalus Tilesius) Based on Mitochondrial DNA Sequences vol.20, pp.3, 2010, https://doi.org/10.5352/JLS.2010.20.3.336