DOI QR코드

DOI QR Code

Inhibitory Effects of Green Tea against Squalene Synthase

녹차의 squalene synthase 저해효과

  • Choi, Sung-Won (Department of Food and Culinary Art, Osan College) ;
  • Hur, Nam-Yoon (Department of Food and Culinary Art, Osan College) ;
  • Lee, Han-Seung (Department of Bio-Food Materials, College of Medical and Life Sciences, Silla University) ;
  • Baik, Moo-Yeol (Department of Food Science and Biotechnology, Kyung Hee University) ;
  • Ahn, Soon-Cheol (Department of Microbiology and Immunology, Pusan National University School of Medicine) ;
  • Lee, Jeong-Gyu (Department of Family Medicine, Pusan National University School of Medicine)
  • 최성원 (오산대학교 호텔조리계열) ;
  • 허남윤 (오산대학교 호텔조리계열) ;
  • 이한승 (신라대학교 바이오식품소재학과) ;
  • 백무열 (경희대학교 식품공학과) ;
  • 안순철 (부산대학교 의과대학 미생물학교실) ;
  • 이정규 (부산대학교 의과대학 가정의학과)
  • Published : 2008.02.28

Abstract

Various biological resources from plants, animals, mushrooms, microorganisms, and foods were tested for the inhibitory activity against squalene synthase (SQS). Among 32 samples, more than one fourths (9 samples) exhibited significant SQS inhibitory activity. Interestingly, SQS inhibitory activity was detected in the samples such as green tea, fermented soybean paste, and plum juice. The SQS inhibitory activity of green tea was not only high but also stable. Its SQS inhibitors were supposed to be catechin derivatives, which have been known to be main bioactive components in green tea. The galloyl catechins showed higher SQS inhibitory activity compared to the nongalloyl catechins. Especially, (-)-epigallocatechin gallate appeared to be strongest inhibitor against squalene synthase ($IC_{50}=90{\mu}M$).

콜레스테롤 생합성 과정에 있어서 속도조절 단계 효소의 하나인 squalene synthase에 대한 저해물질의 탐색을 목적으로, 30종의 다양한 천연물을 대상으로 squalene synthase에 대해 저해효과를 검토한 결과 녹차추출물에서 비교적 저해활성이 높고 재현성이 있게 저해효과를 나타내는 것으로 확인되었다. 녹차에 함유되어 있는 squalene synaase에 대한 저해물질의 용매추출성을 검토한 결과 ethyl acetate와 n-butanol 층에 저해물질이 많이 함유되어 있는 것으로 확인되었으며 저해물질은 녹차의 polyphenol 화합물인 catechin에 의한 것으로 추정되었다. Catechin 표준용액의 각 농도에 따른 squalene synthase 저해작용을 살펴 본 결과, (-)-epigallocatechin gallate, (-)-epicatechin gallate, (-)-epigauocatechin, (-)-epicatechin, (+)-catechin의 순으로 저해활성이 강한 것으로 나타났으며 가장 강한 저해활성을 나타내는 (-)-epigallocatechin gallate의 $IC_{50}$값은 $90{\mu}M$이었다.

Keywords

References

  1. Abe, I., J. C. Tomesch, S. Wattanasin and G. D. Prestwich. 1993. Inhibitors of squalene biosynthesis and metabolism. Natural Product Reports 11, 279-293 https://doi.org/10.1039/np9941100279
  2. Agnew, W. S. 1985. Squalene synthetase. Methods in Enzymology. 110, 359-375 https://doi.org/10.1016/S0076-6879(85)10094-7
  3. Baxter, A., B. J. Fitzgerald, J. L. Hutson, A. D. McCarthy, J. M. Motteram, B. C. Ross, M. Sapra. M. A. Snowden, N. S. Watson, R. J. Williarm and C. Wright. 1992. Squalestatin I, a potent inhibitor of squalene synthase, which lower serum cholesterol in vivo. J. Biol. Chem. 267, 11705-11708
  4. Bergstrom, J. D., M. M. Krutz, D. J. Rew, A. M. Amend, J. D. Karkas, R. D. Bostedor, V. S. Bansal, C. Dufresns, F. L. Van Middleworth, O. D. Hensens, J. M. Liesch, D. L. Zinc, K .E. Wilson, J. Onishi, J. A. Milligan, G. Bills, L. Kaplan, M. Nallin Omsted, R. G. Jenskins, L. Huang, M. S. Meinz, L. Quinn, R. U. Burg, Y. L. Kong, S. Mochales, M. Mojena, I. Martin, F. Pelaez, M. T. Diez and A. W. Albert. 1993. Zaragozic acids: A Family of metabolites that are picomolar competitive inhibitors of squalene synthase. Proc. Natl. Acad. Sci. USA 90, 80-89 https://doi.org/10.1073/pnas.90.1.80
  5. Biller, S. A., C. Forster, E. M. Gordon, T. Harrity, W. A. Scott and P. Ciosek. 1988. Isoprenoid (phosphinylmethyl) phosphonates as inhibitors of squalene synthetase. J. Med. Chem. 31, 1869-1871 https://doi.org/10.1021/jm00118a001
  6. Biller, S. A., C. Forster, E. M. Gordon, T. Harrity, L. C. Rich, J. Marretta and P. Ciosek. 1991. Isoprenyl phosphi nylformates: new inhibitors of squalene synthetase. J. Med. Chem. 34, 1914-1916 https://doi.org/10.1021/jm00110a025
  7. Brown, M. S. and J. L. Goldstein. 1980. Multivalent feedback regulation of HMG-CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth. J. Lipid Res. 21, 505-512
  8. Cohen, L. H., A. M. Griffioen and R. J. A. Wanders. 1986. Regulation of squalene synthase in rat liver. Biochem. Biophy. Res. Commu. 138, 335-341 https://doi.org/10.1016/0006-291X(86)90285-8
  9. Dawson, M. J., J. E. Farthing, P. S. Marshall, R. F. Middleton, M. J. O'Neill, A. Shuttleworth, C. Stylli, R. M. Tait, P. M. Taylor, H. G. Wildman, A. D. Buss, D. Langley and M. V. Hayes. 1992. The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. I. Toxonomy, fermentation, isolation, physico-chemical properties and biological activity. J. Antibiotics 45, 639-647 https://doi.org/10.7164/antibiotics.45.639
  10. Dugan, R. E. and J. W. Porter. 1972. Hog liver squalene synthase : The partial purification of the particulate enzyme and kinetic analysis of the reaction. Arch. Biochem. Biophy. 152, 28-35 https://doi.org/10.1016/0003-9861(72)90189-0
  11. Goldstein, J. L. and S. M. Brown. 1990. Regulation of the mevalonate pathway. Nature 33, 425-433 https://doi.org/10.1038/033425a0
  12. Hasumi, K., C. Shinohara, T. Iwanaga and A. Endo. 1993. Laterin, A new inhibitors of acyl-CoA: cholesterol acyltransferase produced by Gibberella lateritium IFO 7188. J. Antibiotics 46, 782-780
  13. Heider, J. G. 1986. Agent which inhibit cholesterol esterification in the intestine andtheir potential value in the treatment of hypercholesterolemia. J. R. Prous Science Publishers. pp. 423-438
  14. Hertog, M. G., D. Kromhort, C. Aravanis, H. Blackburn, R. Buzina, F. Fidanza, S. Giampaoli, A. Jansen, A. Monotti and S. Nedeljkovic. 1995. Flavonoid intake and long-term risk of coronary heart diseases and cancer in the seven countries study. Arch. Int. Med. 155, 381-386 https://doi.org/10.1001/archinte.1995.00430040053006
  15. Jin, H. H., J. L. Yang, J. H. Chung and Y. Kim. 2004. Hypocholesterolemic effects of green tea in cholesterol-fed rats. J. Korean Soc. Food Sci. Nutr. 33, 47-51 https://doi.org/10.3746/jkfn.2004.33.1.047
  16. Keller, R. K. and F. Vilsaint. 1993. Regulation of isoprenoid metaboliosm in rat liver: near constnat chain lengths of dolichy phosphate and ubiquinone are maintained during greatly altered rates of cholesterogenesis. Biochim. Biophy. Acta. 1170, 20-25
  17. Feussner, G. 1994. HMG CoA reductase inhibitors. Curr. Opin. Lipidol. 5, 59-68 https://doi.org/10.1097/00041433-199402000-00010
  18. Kuswik, R. G. and H. C. Rilling. 1987. Squalene synthetase. Solubilization and partial purification of squalene synthetase, copurification of presqualene pyrophosphate and squalene synthetase activities. J. Biol. Chem. 262, 1505-1510
  19. Naganuma, S., Sakai, K. Hasumi and A. Endo. 1992. Acaterin, a novel inhibitor of acyl-CoA: cholesterol acyltransferase produced by Pseudomonas sp. A92. J. Antibiotics 45, 1216-1223 https://doi.org/10.7164/antibiotics.45.1216
  20. Padley, F. B. and J. Podmore. 1985. The role of fats in human nutrition. pp. 7-15, Ellis Horwood. Chichester
  21. Papjak, G., D. S. Goodman, J. W. Cornforth, R. H. Cornforth and R. Ryhage. 1961. Studies on the biosynthesis of cholesterol: X V. Mechanism of squalene biosynthesis from farnesyl pyrophosphate and from mevalonate. J. Biol. Chem. 236, 1934-1939
  22. Park, C. O., S. H. Jin, and B. H. Ryu. 1996. Antioxidant activity of green tea extracts toward human low density lipoprotein. Korean J. Food Sci. Technol. 28, 850-858
  23. Park, J. K., K. Hasumi and A. Endo. 1993. Inhibitors of acyl- CoA: cholesterol acyltrans- ferase by Helminthosporol and its related compounds. J. Antibiotics 46, 1303-1310 https://doi.org/10.7164/antibiotics.46.1303
  24. Poulter, C. D. and H. C. Rilling. 1991. Biosynthesis of isoprenoid compounds. pp. 413-441, Wiley, New York
  25. Shechter, I., I. Klinger and M. L. Rucher. 1992. Solubilization and characterization of a truncated form of rat hepatic squalene synthase. J. Biol. Chem. 267, 8628-8635
  26. Sidebottom, P. J., R. M. Highcock, S. J. Lane, P. A. Procopiou and N. S. Watson. 1992. The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. II. Structure elucidation. J. Antibiotics 45, 648-658 https://doi.org/10.7164/antibiotics.45.648
  27. Spector, A. A. and M. A. Yorek. 1985. Membrane lipid composition and cellular function. J. Lipid Res. 26, 1015- 1021
  28. Stedronsky, E. R. 1994. Interaction of bile acids and cholesterol with non-systematic agents having hypocholesterolemic properties. Biochimica. et Biophysica. Acta. 1210, 255- 262 https://doi.org/10.1016/0005-2760(94)90230-5
  29. Tijburg, L. B., T. Mattern, J. D. Folts, U. M. Weigerber and M. B. Katen. 1997. Tea flavonoids and cardiovascular disease: a review. Crit. Rev. Food Sci. Nutr. 37, 771-785 https://doi.org/10.1080/10408399709527802
  30. Tomada, H., H. Nishida, R. Masuda, J. Cao, S. Okuda and S. Omura. 1991. Purpactins, new inhibitors of acyl-CoA: cholesterol acyltransferase produced by Penicillium purpurogenum I. Production, isolation and physico-chemical and biological properties. J. Antibiotics 44, 136-145 https://doi.org/10.7164/antibiotics.44.136
  31. Yamaguchi, Y., M. Hayashi, H. Yamazoe, M. Kunitomo. 1991. Preventive effects of green tea extract on lipid abnormalities in serum, liver and aorta of mice fed a atherogenic diet. Nippon Yakurigaku Zasshi 7, 329-337
  32. Yeo, S. G., C. W. Lee, Y. W. Lee, T. G. Lee, Y. H. Park and S. B. Kim. 1995. Antioxidant effect of tea extract from green tea, Oolong tea and black tea. J. Korean Soc. Food Nutr. 24, 299-304