DOI QR코드

DOI QR Code

A Set of Anthocyanin Biosynthetic Genes are Differentially Expressed in Strawberry (Fragaria x ananassa cv Maehyang) during the Fruit Development Process

매향 딸기로부터 anthocyanin 합성 유전자의 분리 및 과실발달 과정에서의 발현 분석

  • Bae, Ki-Suk (Department of Molecular Biology, Dankook University, BK21 Graduate Program for RNA Biology and Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Kih, Joon-Yeong (Department of Molecular Biology, Dankook University, BK21 Graduate Program for RNA Biology and Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Pyee, Jae-Ho (Department of Molecular Biology, Dankook University, BK21 Graduate Program for RNA Biology and Institute of Nanosensor and Biotechnology, Dankook University)
  • 배기석 (단국대학교 분자생물학과, BK21 RNA 전문인력양상팀, 나노센서바이오텍연구소) ;
  • 길준영 (단국대학교 분자생물학과, BK21 RNA 전문인력양상팀, 나노센서바이오텍연구소) ;
  • 피재호 (단국대학교 분자생물학과, BK21 RNA 전문인력양상팀, 나노센서바이오텍연구소)
  • Published : 2008.02.28

Abstract

Anthocyanin synthesis in strawberry (Fragaria x ananassa cv Maehyang) begins approximately 26 days postflowering and continued throughout fruit ripening. A set of cDNA clones encoding the anthocyanin biosynthetic enzymes were isolated from strawberry. A pair of primers were designed for polymerase chain reaction (PCR) through the comparison of the nucleotide sequences of homologous genes from diverse plants. Reverse transcriptase-PCRs were performed using cDNA synthesized from ripe fruit total RNA and the primers corresponding to each gene. Eight genes of the anthocyanin pathway were cloned and confirmed by sequencing to code for phenylalanine ammonia lyase (PAL), 4-cummarate CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone-3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidine synthase (ANS), UDP-glucose:flavonoid-3-O-glucosyl-transferase (UFGT). Northern analyses showed that the corresponding genes were differentially expressed during the fruit development process. All genes except PAL were predominantly expressed in fruit. Expression of PAL, DFR and ANS was detected 10 days postflowering at the early stage of fruit development, declined for a while and sharply increased 22 days postflowering then showed a peak 34 days postflowering. The other genes, however, were not expressed up to 22 or 30 days postflowering when the initial fruit ripening events occur at the time of initiation of anthocyanin accumulation. The onset of anthocyanin synthesis in ripening strawberry coincides with a coordinated induction of the anthocyanin pathway genes, suggesting the involvement of regulatory genes. We propose that at least two different regulatory mechanisms playa role in the biosynthesis of anthocyanin during color development of strawberry.

매향' 딸기의 안토시아닌 생합성은 개화 후 26일째 시작되어 과실의 성숙기 동안 계속된다. 딸기로부터 안토시아닌의 생합성에 관여하는 주요 유전자를 분리하였다. 각각의 유전자에 대해, 다양한 식물체의 유사 유전자의 염기서열을 비교하여 PCR (polymerase chain reaciton) primer를 제작하였다. 숙기의 딸기에서 분리된 total RNA로부터 합성된 CDNA와 각 primer를 이용하여 RT (reverse transcriptase)-PCR을 수행하였다. 각 CDNA clone의 염기서열을 작성하여 분석한 결과, 이들은 안토시아닌 생합성에 관여하는 phenylalanine ammonia lyase (PAL), 4-cummarate CoA ligase (4CL), chalcone synthase (CHS), chalcone isomerase (CHI), flavanone-3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidine synthase (ANS) 그리고 UDP-glucose:flavonoid-3-O-glucosyltransferase (UFGT) 효소에 해당되었다. Northern blot 분석 결과, 이들 유전자는 과실 발달과정에서 시기적으로 조절되었다. 특히 PAL을 제외한 모든 유전자는 과실에서만 주로 발현되었다. PAL, DFR 그리고 ANS유전자는 과실 초기 발달 단계인 개화 후 10일에 검출된 후 감소하다가, 22일에 다시 증가하기 시작하여 34일에 최대가 되었다. 한편, 다른 유전자들은 초기에는 발현되지 않다가, 안토시아닌이 축적되기 시작하는 개화 후 $22{\sim}30$일에 처음으로 검출되었다. 본 연구를 통해, 딸기 과실 발달과정에서 안토시아닌 생합성 과정에 관여하는 여러 유전자가 과실 숙기에 함께 조절되는 현상을 알 수 있다. 이러한 연구 결과는 안토시아닌 합성과정을 제어하는 조절 유전자가 존재한다는 것을 시사한다. 그리고 딸기의 안토시아닌 생합성 유전자의 발현패턴을 크게 두 가지로 나눌 수 있는 것으로 보아, 딸기의 안토시아닌 생합성에는 적어도 두 가지 서로 다른 조절 기작이 관여하여 색소 발달 과정을 제어할 것으로 보인다.

Keywords

References

  1. Aharoni, A., C. H. De Vos, M. Wein, Z. Sun, R. Greco, A. Kroon, J. N. Mol and A. P. O'Connell. 2001. The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28, 319-332 https://doi.org/10.1046/j.1365-313X.2001.01154.x
  2. Almeida, J. R., E. D'Amico, A. Preuss, F. Carbone, C. H. de Vos, B. Deiml, F. Mourgues, G. Perrotta, T. C. Fischer, A. G. Bovy, S. Martens and C. Rosati. 2007. Characterization of major enzymes and genes involved in flavonoid and proanthocyanidin biosynthesis during fruit development in strawberry (Fragaria x ananassa). Archives of Biochemistry and Biophysics. 465, 61-71 https://doi.org/10.1016/j.abb.2007.04.040
  3. Cordenunsi, B. R., M. I. Genoves, J. R. O. Nascimento, N. M. A. Hsaaimorro, R. J. Santos and F. M. Lajolo. 2005. Effect of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chem. 91, 113-121 https://doi.org/10.1016/j.foodchem.2004.05.054
  4. Davies, K. M. and K. E. Schwinn. 2006. Molecular biology and biotechnology of flavonoid biosynthesis. pp. 143-218, In Anderson, O. M. and K. R. Markham (eds.), Flavonoids: Chemistry, Biochemistry and Applications, CRC Taylor & Francis, Boca Raton
  5. Halbwirth, H., I. Puhl, U. Haas, K. Jezik, D. Treutter and K. Stich. 2006. Two-phase flavonoid formation in developing strawberry (Fragaria x ananassa) fruit. J. Agric. Food Chem. 54, 1479-1485 https://doi.org/10.1021/jf0524170
  6. Holton, T. A. and E. C. Cornish. 1995. Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7, 1071-1083 https://doi.org/10.1105/tpc.7.7.1071
  7. Kurata, H., A. Mochizuki, N. Okuda, M. Seki and S. Furusaki. 2000. Intermittent light irradiation with secondor hour-scale periods controls anthocyanin production by strawberry cells. Enzyme Microb. Technol. 26, 621-629 https://doi.org/10.1016/S0141-0229(00)00143-5
  8. Lepiniec, L., I. Debeaujon, J. M. Routaboul, A. Baudry, L. Pourcel, N. Nesi and M. Caboche. 2006. .Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57, 405-430 https://doi.org/10.1146/annurev.arplant.57.032905.105252
  9. Manning, K. 1998. Isolation of a set of ripening-related genes from strawberry: their identification and possible relationship to fruit quality traits. Planta. 205, 622-631 https://doi.org/10.1007/s004250050365
  10. Mori, T., M. Sakurai and M. Sakuta. 2001. Effects of conditioned medium on activities of PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa. Plant Sci. 160, 355-360 https://doi.org/10.1016/S0168-9452(00)00399-X
  11. Meyers, K. J., C. B. Watkins, M. P. Pritts and R. H. Liu. 2003. Antioxidant and antiproliferative activities of strawberries. J. Agric. Food Chem. 51, 6887-6892 https://doi.org/10.1021/jf034506n
  12. Moyano, E., I. Portero-Robles, N. Medina-Escobar, V. Valpuesta, J. Munoz-Blanco and J. L. Caballero. 1998. A fruit-specific putative dihydroflavonol 4-reductase gene is differentially expressed in strawberry during the ripening process. Plant Physiol. 117, 711-716 https://doi.org/10.1104/pp.117.2.711
  13. Sambrook, J. and D. W. Russel. 2001. Molecular Cloning: A laboratory Manual. pp. 7.35-7.40, 3rd eds., Cold Spring Harbor Laboratory Press, New York
  14. Wang, S. Y. and H. S. Lin. 2000. Antioxidant activity in fruits and leaves of blackberry raspberry and strawberry varies with cultivars and developmental stage. J. Agric. Food Chem. 48, 140-146 https://doi.org/10.1021/jf9908345
  15. Wang, S. Y. and W. Zheng. 2001. Effect of plant growth temperature on antioxidant capacity in strawberry. J. Agri. Food Chem. 49, 4977-4982 https://doi.org/10.1021/jf0106244
  16. Wicklund, T., H. J. Rosenfeld, B. K. Martinsen, M. W. Sundfor, P. Lea, T. Rruun, R. Blomhoff and K. Haffner. 2005. Antioxidant capacity and colour of strawberry jam as influenced by cultivar storage conditions. Lebemsm-Wiss. u-Technol. 38, 387-392 https://doi.org/10.1016/j.lwt.2004.06.017
  17. Wilkinson, J. Q., M. B. Lanahan, T. W. Conner and H. J. Klee. 1995. Identification of mRNAs with enhanced expression in ripening strawberry fruit using polymerase chain reaction differential display. Plant Molecular Biology. 27, 1097-1108 https://doi.org/10.1007/BF00020883
  18. Youn, S. J., J. G. Cho, U. K. Choi and D. J. Kwoen. 2007. Change of biological activity of strawberry by frozen storage and extraction method. J. Life Sci. 17, 1734-1738 https://doi.org/10.5352/JLS.2007.17.12.1734
  19. Zhang, Y., N. P. Seeram, R. Lee, L. Feng and D. Heber. 2008. Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties. J. Agric. Food Chem. Epub 2008 Jan. 23

Cited by

  1. Analysis of growth pattern, gene expression and flavonoid contents under LED light wavelength in Lettuce (Lactuca sativa L.) vol.42, pp.2, 2015, https://doi.org/10.5010/JPB.2015.42.2.104
  2. Functional Analysis of a Grapevine UDP-Glucose Flavonoid Glucosyl Transferase (UFGT) Gene in Transgenic Tobacco Plants vol.20, pp.2, 2010, https://doi.org/10.5352/JLS.2010.20.2.292
  3. Physicochemical Properties and Antioxidant Activities of ‘Seolhyang’ and ‘Janghee’ Strawberries from Different Ripening Stages Grown in Korea vol.26, pp.1, 2016, https://doi.org/10.17495/easdl.2016.2.26.1.80