DOI QR코드

DOI QR Code

NaCl 스트레스에 따른 벼 유식물의 뿌리 수분흡수와 엽록소형광의 변화

Changes in Root Water Uptake and Chlorophyll Fluorescence of Rice (Oryza sativa L. cv. Dongjin) Seedling under NaCl Stress

  • 전현식 (진주산업대학교 작물생명과학과)
  • Chun, Hyun-Sik (Department of Crop Science and Biotechnology, Collage of Bio-Resources Science, Jinju National University)
  • 발행 : 2008.02.28

초록

염분에 대한 벼 유식물의 생리학적 광화학적 반응을 잎의 상대수분함량, 엽록소 형광 및 뿌리의 수분흡수를 통하여 연구하였으며, 벼 유식물이 농도가 다른 NaCl에 노출되었을 경우, 500 mM 이상의 농도와 4일, 5일간 스트레스를 준 처리구에서 식물체의 외관상 심각한 장해 징후가 나타났다. 500 mM에서는 5일간, 1,000 mM에서는 4일간 스트레스를 준 처리구와 NaCl를 처리하지 않은 대조구 간의 광합성 Fv/Fm에서 유의성이 있는 차이가 나타났으며, 그러나 뿌리 수분흡수에서는 Fv/Fm에 비해 스트레스 기간이 짧은 2일에서도 수분흡수의 차이가 나타나기 시작했다. NaCl에 노출된 식물에서 잎의 상대수분함량은 외부 염분의 농도가 증가하구 스트레스 기간이 길어짐에 따라 점차 감소하였다. 잎의 상대수분함량 결과에서 1,000 mM 농도로 1일간 처리된 경우(88%)와 비교했어 2일 이상 NaCl를 처리한 경우들(58-67%)에서 보다 낮은 수분함량을 보였다. NaCl 스트레스는 4일과 5일간 처리한 경우 etiolate된 벼 유식물의 광 유도 녹화과정에서 NaCl 농도가 증가함에 따라 직선적으로 심하게 억제하였다(각각의 $R^2$=0.812과 0.918). 염분 스트레스 기간과 NaCl농도가 증가되었을 때, NaCl의 농도가 같음에도 잎의 Fv/Fm보다는 뿌리의 수분흡수가 더 민감하게 반응하는 것으로 보아 잎에서의 장해보다는 뿌리에서의 반응이 먼저 일어나는 것으로 보인다.

The physiological and photochemical responses of rice seedling to NaCl stress were investigated through measuring leaf relative water content (RWC), root water uptake and chlorophyll fluorescence. When plants were exposed to increased salinity stress, the visual symptoms of injury were significant at ${\geq}$500 mM NaCl concentration for 4 and 5 day stress periods. The differences in Fv/Fm between control treatment and plants treated with 500 mM and 1,000 mM NaCl were evident after 5 day and 4 day, respectively, whereas in root water uptake its effect was observed at 500 mM and 1,000 mM NaCl at 2 day of salt-stressed periods. Leaf RWC in salt-stressed plants decreased gradually with increasing salinity in exogenous solution and duration of salt stress, and these decrease showed leaf RWC of 58-68% atduration over 2 day stress of 1,000 mM NaCl treatment and 88% at 1 day stress. NaCl stress led to a significant inhibition of the light-induced greening in etiolated rice plants, especially in 4 and 5 day salt-stressed plants, which linearly decreased with NaCl concentration ($R^2$=0.812 and 0.918, respectively). The effects of NaCl stress in rice seedlings indicate that water uptake in root is more sensitive to increasing NaCl concentration and stress duration than Fv /Fm in leaves compared with the same NaCl concentration.

키워드

참고문헌

  1. Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24,1-15 https://doi.org/10.1104/pp.24.1.1
  2. Bayuelo-Jimenez, J. S., D. G. Debouck and J. P. Lynch. 2003. Growth, gas exchange, water relations, and ion composition of Phaseolus species grown under saline conditions. Field Crops Research 80, 207-222 https://doi.org/10.1016/S0378-4290(02)00179-X
  3. Chun, H. S., C. H. Lee and C. B. Lee. 1994. Mercury-induced alternations of chlorophyll a fluorescence kinetics in isolated barley (Hordeum vulgare L. cv. Albori) chloroplast. Journal of Photoscience 1, 47-52
  4. Demiral, T. and I. Turkan. 2004. Does exogenous glycinebetaine affect antioxidantive system of rice seedlings under NaCl treatment? Journal of Plant Physiology 161, 1089-1100 https://doi.org/10.1016/j.jplph.2004.03.009
  5. Demiral, T. and I. Turkan. 2005. Comparative lipid peroxidation, antioxidant defense system and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany 53, 247-257 https://doi.org/10.1016/j.envexpbot.2004.03.017
  6. Demiral, T. and I. Turkan. 2006. Exogenous glycinebetaine affects growth and proline accumulation and retards senescence in two rice cultivars under NaCl stress. Environmental and Experimental Botany 56, 72-79 https://doi.org/10.1016/j.envexpbot.2005.01.005
  7. Dolinar, B. and L. Trauner. 2007. The impact of structure on the undrained shear strength of cohesive soils. Engineering Geology 92, 88-96 https://doi.org/10.1016/j.enggeo.2007.04.003
  8. FAO. 2000. Extent and causes of salt-affected soils in participating countries. Available on: http://www.fao.org/ag/agl/agll/spush/topic2.htm (accessed December 12, 2007)
  9. Fernandez-Gracia, N., V. Martinezand, A. Cerda and M. Cerdaand Carvajal. 2002. Water and nurtient uptake of grafted tomato plants grown under saline conditions. Journal of Plant Physiology 159, 899-905 https://doi.org/10.1078/0176-1617-00652
  10. Liu, S. H., B. Y. Fu, H. X. Xu, L. H. Zhu, H. Q. Zhai and Z. K. Li. 2007. Cell death in response to osmotic and salt stresses in two rice (Oryza sativa L.) ecotypes. Plant Science 172, 897-902 https://doi.org/10.1016/j.plantsci.2006.12.017
  11. Lopez-Climent, M. F., V. Arbona, R. M. Pere-Clemente and A. Gomez-Cadenas. 2008. Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environmental and Experimental Botany 62, 176-184 https://doi.org/10.1016/j.envexpbot.2007.08.002
  12. Maggio, A., G. Raimondi, A. Martino and S. De Pascale. 2007. Salt stress response in tomato beyond the salinity tolerance threshold. Environmental and Experimental Botany 59, 276-282 https://doi.org/10.1016/j.envexpbot.2006.02.002
  13. Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: An overview. In miniview. Archives of Biochemistry and Biophysics 444, 139-158 https://doi.org/10.1016/j.abb.2005.10.018
  14. Morant-Manceau, A., E. Praier and G. Tremblin. 2004. Osmotic adjustment, gas exchanges and chlorophyll fluorescence of a hexaploid triticale and its parental species under salt stress. Journal of Plant Physiology 161, 25-33 https://doi.org/10.1078/0176-1617-00963
  15. Munns, R. 1993. Physiological process limiting plant growth in saline soils: some dogma and hypothesis. Plant Cell Environment 16, 15-24 https://doi.org/10.1111/j.1365-3040.1993.tb00840.x
  16. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell & Environment 25, 239-250 https://doi.org/10.1046/j.0016-8025.2001.00808.x
  17. Ndayiragije, A. and S. Lutts. 2006. Do exogenous polyamines have an impact on the response of a salt-sensitive rice cultivar to NaCl? Journal of Plant Physiology 163, 506-516 https://doi.org/10.1016/j.jplph.2005.04.034
  18. Nelson, D. R. and P. M. Melea. 2007. Subtle changes in rhizosphere microbial community structure in response to increased boron and sodium chloride concentrations. Soil Biology & Biochemistry 39, 340-351 https://doi.org/10.1016/j.soilbio.2006.08.004
  19. Nemoto, Y. and T. Sasakuma. 2002. Differential stress responses of early salt-stress responding genes in common wheat. Phytochemistry 61, 129-133 https://doi.org/10.1016/S0031-9422(02)00228-5
  20. Neocleous, D. and M. Vasilakakis. 2007. Effects of NaCl stress on red rasberry (Rubus idaeus L. 'Autumn Bliss'). Scientia Horiculture 112, 282-289 https://doi.org/10.1016/j.scienta.2006.12.025
  21. Parida, A. K. and A. B. Das. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safty 60, 324-349 https://doi.org/10.1016/j.ecoenv.2004.06.010
  22. Pieters, A. J. and S. El. Souki. 2005. Effects of drought during grain filling on PS II activity in rice. Journal of Plant Physiology 162, 903-911 https://doi.org/10.1016/j.jplph.2004.11.001
  23. Reinbothe, C., S. Pollmann, C. Desvigne, M. Weigele, E. Beck and S. Reinbothe. 2004. LHPP, the light-harvesting NADPH: protochlorophyllide (Pchlide) oxidoreductase: Pchlide complex of etiolated plants, is developmentally expressed across the barley leaf gradient. Plant Science 167, 1027-1041 https://doi.org/10.1016/j.plantsci.2004.05.044
  24. Salekdeh, Gh. H., J. Siopongco, L. J. Wade, B. Ghareyazie and J. Bennett. 2002. A proteomic approach to analyzing drough- and salt-responsiveness in rice. Field Crops Research 76, 199-219 https://doi.org/10.1016/S0378-4290(02)00040-0
  25. Savvas, D., N. Mantzos, P. E. Barouchas, I. L. Tsirogiannis, C. Plympios and H. C. Passam. 2007. Modelling salt accumulation by a bean crop grown in a closed hydroponic system in relation to water uptake. Scientia Horiculturae 111, 311-318 https://doi.org/10.1016/j.scienta.2006.10.033
  26. Skaggs, T. H., M. Th. van Genuchten, P. J. Shouse and J. A. Poss. 2006. Macroscopic approaches to root water uptake as a function of water and salinity stress. Agriculture Water Management 86, 140-149 https://doi.org/10.1016/j.agwat.2006.06.005
  27. Sultana, N., T. Ikeda and R. Itoh. 1999. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Experimental Botany 42, 211-220 https://doi.org/10.1016/S0098-8472(99)00035-0
  28. Taiz, L. and E. Zeiger. 2006. Salinity stress. In the Plant Physiology. pp. 692-698, 4th eds., Sinauer Associates Publ., Sunderland, MA.
  29. Tang, D., S. Shi, D. Li, C. Hu and Y. Lui. 2007. Physiological and biochemical reponse of Scytonema javanicum (cyanobacteium) to salt stress. Journal of Arid Environment 71, 312-320 https://doi.org/10.1016/j.jaridenv.2007.05.004
  30. Tuna A. L., C. Kaya, C. M. Dikilitas and D. Higgs. 2008. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany 62, 1-9 https://doi.org/10.1016/j.envexpbot.2007.06.007
  31. Tuteja, N. 2007. Mechanisms of high salinity tolerance in plant. Methods in Enzymology 428, 419-438 https://doi.org/10.1016/S0076-6879(07)28024-3
  32. Whetherley, P. E. 1950. Studies in the water relations of cotton plants. I. The field measurement of water deficit in leaves. New Phytology 49, 81-87 https://doi.org/10.1111/j.1469-8137.1950.tb05146.x
  33. Zang, X. and S. Komatsu. 2007. A proteomics approach for identifying osmotic-stress-releated proteins in rice. Phytochemistry 68, 426-437 https://doi.org/10.1016/j.phytochem.2006.11.005
  34. Zhu, J. K. 2003. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology 6, 441-445 https://doi.org/10.1016/S1369-5266(03)00085-2