DOI QR코드

DOI QR Code

Arabidopsis 피토크롬 돌연변이체(phyAB)의 뿌리 굴중성 반응

Root Gravitropic Response of Phytochrome Mutant (phyAB) in Arabidopsis

  • 발행 : 2008.02.28

초록

Arabidopsis의 피토크롬 2중 돌연변이형 (phrAB)은 야생형 (WT)과 비교하여 뿌리의 굴중성 반응이 지연되었다. 중력 자극을 받은 지 8시간 후에 돌연변이체의 굴중성 반응은 야생형의 48%를 나타내었다 지연된 반응은 중력 자극을 준 후 1.5 시간 뒤에 나타났다. 12시간 동안 야생형과 돌연변이형의 뿌리 절편에서 에틸렌 생성을 측정하였다. 돌연변이형의 에틸렌 생성은 12시간이 경과한 후에 야생형의 40% 정도로 감소되었다. 이러한 결과는 피토크롬이 에틸렌 생성과 연관되어 있음을 제시하고 있다. 일반적으로 에틸렌은 식물의 뿌리나 줄기를 억제한다. 본 연구에서는 에틸렌 전구체인 1-aminocycloprpane-1-carboxylic acid (ACC)를 처리하여 뿌리의 생장을 측정하였다. 야생형은 ACC 존재하에 뿌리 생장이 억제되었으나, 돌연변이형은 야생형만큼 억제를 나타내지 않았다. 이 결과를 확인하기 위하여 ACC 존재하에 굴중성 반응을 측정한 결과, 야생형은 ACC가 없는 경우와 비교하여 37.4%의 억제를 나타냈으나, 돌연변이형은 ACC가 없는 경우와 비교하여 6.6%만을 억제하였다. 이 결과는 피토크롬이 에틸렌 생성을 통하여 뿌리 굴중성 반응을 조절한다는 것을 제시한다.

Phytochrome double mutant (PhyAB) showed the delayed root gravitropic response compared to the wild type (WT) in Arabidopsis. After 8 hr of gravistimulation, the gravitropic response of mutant showed 48% of the WT. The delayed response started at 1.5 hr after gravistimulation. And we measured the ethylene production in the root segments of WT and mutant for 12 hr. Ethylene production of mutant decreased about 40% of the WT at 12 hr. This result suggested that the phytochrome might be linked with ethylene production in some way. Generally, ethylene inhibits the growth of plant organs including roots. We measured the root growth rate in the presence of ACC (1-aminocyclopropane-1-carboxylic acid), a precursor of ethylene. And WT showed the inhibition of root growth with ACC, but mutant did not show the inhibition as WT did. To confirm the relationship between the ethylene and gravitropic response, we measured the gravitropic response with ACC. In the presence of $10^{-6}$ M ACC, WT showed the 37.4% inhibition compared to the control (no ACC), whereas mutant showed the only 6.6% inhibition of control (no ACC). This research suggested the relationship between phytochrome and gravitropic response through an ethylene production.

키워드

참고문헌

  1. Abeles, F. B., P. W. Morgan and M. E. Saltveit. 1992. Ethylene in Plant Biology. 2nd eds., Academic Press. San Diego. CA, USA.
  2. Blakeslee, J. J., A. Bandyopadhyay, W. A. Peer, S. N. Makam and A.S. Murphy. 2004. Relocalization of the PIN1 auxin efflux facilitatior plays a role in phototropic response. Plant Physiol. 134, 28-31 https://doi.org/10.1104/pp.103.031690
  3. Buer, C. S., G. O. Wasteneys and J. Masle. 2003. Ethylene modulates root-wave responses in Arabidopsis. Plant Physiol. 132, 1085-1096 https://doi.org/10.1104/pp.102.019182
  4. Clack, T., S. Mathews and R. A. Sharrock. 1994. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: the sequences and expression of PHYD and PHYE. Plant Mol. Biol. 25, 413-427 https://doi.org/10.1007/BF00043870
  5. Clough, R. C. and R. D. Vierstra. 1997. Phytochrome degradation. Plant Cell Environ. 20, 713-721 https://doi.org/10.1046/j.1365-3040.1997.d01-107.x
  6. Correll, M. J. and J. Z. Kiss. 2005. The roles of phytochromes in elongation and gravitropism of roots. Plant Cell Physiol. 46, 317-323 https://doi.org/10.1093/pcp/pci038
  7. Delvin, P. F., P. R. Robson, S. R. Patel, L. Goosey, R. A. Sharrock and G. C. Whitelam. 1999. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flower time. Plant Physiol. 119, 909-915 https://doi.org/10.1104/pp.119.3.909
  8. Franklin, K. A., U. Praekelt, W. M. Stoddart, O. E. Bilingham, O. E. Halliday and G. C. Whitelam. 2003. Phytochromes B, D and E act redundantly to control multiple physiological responses in Arabidopsis. Plant Physiol. 131, 1340-1346 https://doi.org/10.1104/pp.102.015487
  9. Foo, E., J. J. Ross, N. W. Davies, J. B. Reid and J. L. Weller. 2006. A role for ethylene in the phytochromemediated control of vegetative development. Plant J. 46, 911-921 https://doi.org/10.1111/j.1365-313X.2006.02754.x
  10. Friml, J. and K. Palme. 2002. Polar auxin transport-old questions and new concepts? Plant Mol. Biol. 49, 273-284 https://doi.org/10.1023/A:1015248926412
  11. Hangarter, R. P. 1997. Gravity, light and plant form. Plant Cell Environ. 20, 796-800 https://doi.org/10.1046/j.1365-3040.1997.d01-124.x
  12. Harrison, M. A. and P. G. Pickard. 1986. Evaluation of ethylene as a mediator of gravitropism by tomato hypocotyls. Plant Physiol. 80, 592-595 https://doi.org/10.1104/pp.80.2.592
  13. Hennig, L., W. M. Stoddart, M. Dieterle, G. C. Whitelam and E. Schafer. 2002. Phytochrome E controls light-induced germination of Arabidospsis. Plant Physiol. 128, 194-200 https://doi.org/10.1104/pp.010559
  14. Kim, S. Y. and T. J. Mulkey. 1997a. Effect of auxin and ethylene on elongation of intact primary roots of maize (Zea mays L.). J. Plant Biology. 40, 249-255 https://doi.org/10.1007/BF03030456
  15. Kim, S. Y. and T. J. Mulkey. 1997b. Effect of ethylene antagonists on auxin-induced inhibition of intact primary root elongation of intact primary roots in maize (Zea mays L.). J. Plant Biology. 40, 256-260 https://doi.org/10.1007/BF03030457
  16. Kim, S. Y., Y. Kim, K. S. Kisang and K. W. Kim. 2000. Action of malformin A1 on gravitropic curvature in primary roots of maize (Zea mays L.). J. Plant Biol. 43, 183-188 https://doi.org/10.1007/BF03030417
  17. Kiss, J. Z., R. E. Edelmann and P. C. Wood. 1999. Gravitropism of hypocotyls of wild-type and starch-deficient Arabidopsis seedlings in space flight studies. Planta 209, 96-103 https://doi.org/10.1007/s004250050610
  18. Liscum, E. and R. P. Hangarter. 1993. Genetic evidence that the Pr form of phytochrome B plays a role in Arabidopsis thaliana gravitropism. Plant Physiol. 103, 15-19 https://doi.org/10.1104/pp.103.1.15
  19. Lu, Y. T., H. Hidaka and L. J. Feldman. 1996. Characterization of a calcium/calmodulin-dependent protein kinase homolog from maize roots showing light-regulated gravitropism. Planta 199, 18-24
  20. Madlung, A., F. J. Behringer and T. L. Lomax. 1999. Ethylene plays multiple non-primary roles in modulating the gravitropic response in tomato. Plant Physiol. 120, 897-906 https://doi.org/10.1104/pp.120.3.897
  21. Michalczuk, B. and R. M. Rudnicki. 1993. The effects of monochromatic red light on ethylene production in the leaves of Impatiens balsamina L. and other species. Plant Growth Reg. 13, 125-131 https://doi.org/10.1007/BF00024254
  22. Mulkey, T. J., and M. L. Evans. 1981. Geotropism in corn roots: Evidence for its mediation by differential acid efflux. Science. 212, 70-71 https://doi.org/10.1126/science.212.4490.70
  23. Mullen, J. L., E. Turk, K. Johnson, C. Wolverton, H. Ishikawa, C. Simmons, D. Soil and M. L. Evans. 1998. Root-growth behavior of the Arabidopsis mutant rgr1. Roles of gravitropism and circumnutation in the waving/ coiling phenomenon. Plant Physiol. 118, 1139-1145 https://doi.org/10.1104/pp.118.4.1139
  24. Nagatani, A. 2004. Light-regulated nuclear localization of phytochromes. Curr. Opin. Plant Biol. 7, 708-711 https://doi.org/10.1016/j.pbi.2004.09.010
  25. Parks, B. M. and E. P. Splading. 1999. Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proc. Natl. Acad. Sci. USA 96, 14142-14146 https://doi.org/10.1073/pnas.96.24.14142
  26. Poppe, C., R. P. Hangarter, R. A. Sharrock, F. Nagy and E. Schafer. 1996. The light-induced reduction of the gravitropic growth-orientation of seedlings of Arabidopsis thaliana (L.) Heynth is a photomorphogenic response mediated synergistically by the far-red-absorbing forms of phytochromes A and B. Planta 199, 511-514
  27. Rosen, E., R. Chen and P. H. masson. 1999. Root gravitropism: a complex response to a simple stimulus? Trends Plant Sci. 4, 407-412 https://doi.org/10.1016/S1360-1385(99)01472-7
  28. Salisbury, F. J., A. Hall, C. S. Grierson and K. J. Halliday. 2007. Phytochrome coordinates Arabidopsis shoot and root development. Plant J. 50, 429-438 https://doi.org/10.1111/j.1365-313X.2007.03059.x
  29. Sharrock, R. A. and T. Clack. 2002. Patterns of expression and normalized levels of the five Arabidopsis phytochromes. Plant Physiol. 130, 442-456 https://doi.org/10.1104/pp.005389
  30. Swarup, R., P. Perry, D. Hagenbeek, D. Van Der Straete, G. T. Beemster, G. Sandberg, R. Bhalerao, K. Ljung and M. J. Bennett. 2007. Ethylene pregulates auxin biosynthesis in Arbidopsis seedlings to enhance inhibition of root cell elongation. Plant Cell. 19, 2186-2196 https://doi.org/10.1105/tpc.107.052100
  31. Takano, M., H. Kanegae, T. Shinomura, A. Miyao, H. Hirochika and M. Furuya. 2001. Isolation and characterization of rice phytochrome A mutants. Plant Cell. 13, 521-534 https://doi.org/10.1105/tpc.13.3.521
  32. Vangronsveld, J., H. Clijsters and M. Van Poucke. 1988. Phytochrome-controlled ethylene biosynthesis of intact etiolated bean seedlings. Planta 174, 19-24 https://doi.org/10.1007/BF00394868

피인용 문헌

  1. Effect of Light on Root Growth and Gravitropic Response of Phytochrome Mutants of Arabidopsis vol.22, pp.5, 2012, https://doi.org/10.5352/JLS.2012.22.5.681