DOI QR코드

DOI QR Code

서부 호주 밀 재배지역 내 자연보호구역에 서식하는 흰개미 Drepanotermes tamminensis (Hill) 집에 저장된 식물유체의 영양물질 함량

Nutrient Content of Litter Harvested by Drepanotermes tamminensis (Hill) in Its Mounds Within a Native Reserve In the Western Australian Wheatbelt

  • 박현철 (부산대학교 생명자원과학대학 생명응용과학부) ;
  • 신해수 (서부호주대학교 농업생명과학대학) ;
  • 손홍주 (부산대학교 생명자원과학대학 생명응용과학부) ;
  • 박민경 (부산대학교 생명자원과학대학 생명응용과학부) ;
  • 신택순 (부산대학교 생명자원과학대학 생명자원과학부) ;
  • 최인수 (부산대학교 생명자원과학대학 생명자원과학부) ;
  • 김근기 (부산대학교 생명자원과학대학 생명응용과학부)
  • Park, Hyean-Cheal (School of Applied Life Science, Pusan National University) ;
  • Shin, Hae-Soo (Faculty of Natural and Agricultural Sciences, The University of Western Australia) ;
  • Son, Hong-Joo (School of Applied Life Science, Pusan National University) ;
  • Park, Min-Kyung (School of Applied Life Science, Pusan National University) ;
  • Shin, Teck-Soon (School of Resources and Life Science, Pusan National University) ;
  • Choi, In-Soo (School of Resources and Life Science, Pusan National University) ;
  • Kim, Keun-Ki (Faculty of Natural and Agricultural Sciences, The University of Western Australia)
  • 발행 : 2008.02.28

초록

본 연구는 서부 호주의 Durokoppin 자연 보호 구역에 서식하고 있는 흰개미에 의해 수확되어 개미집에 저장되어 있는 식물유체와 영양물질 함량을 조사하기 위해 수행되었다. 개미집에 저장된 식물유체의 경우 두 조사지역간의 유의적 차이는 없었으며, 개미집에 저장된 식물유체를 분류한 결과 잎과 가지 등 7가지 종류의 식물 유체로 확인되었다. 개미집 내 저장된 식물유체의 영양물질 함량은 유의적 차이는 없었지만 shrubland 보다 Woodland가 높았으며, 영양물질 총량 역시 shrubland보다 Woodland가 많았다. 연구결과를 종합해 보면 흰개미는 조사지역에서 다양한 종류의 식물유체를 수확하여 이용하고 있으며, 조사지역내 토양 유기물 함량이 적은 점을 고려할 때 생태계 영양물질 순환에 있어서 중요한 역할을 하고 있는 것으로 사료된다.

This study estimated the mound litter biomass and the nutrient content of mound litter in the two study plots in Durokoppin Nature Reserve, Western Australia between 2004 and 2005. There were no significant differences in biomass of litter in individual mounds between the two study plots. Seven components of litter were found in the mounds. The nutrient concentrations were higher in the woodland than in the shrubland plot, although the differences were not statistically tested, and the total amount of each nutrient measured was generally greater in the woodland than in the shrubland plot. The aforementioned results show that D. tamminensis harvests various plant material according to biomass availability. The role of this termite takes on particular importance in view of the fact that Western Australian soils are notoriously impoverished in nutrients.

키워드

참고문헌

  1. Abensperg-Traun, M. 1990. Species abundance and habitat differences in biomass of subterranean termites (Isoptera) in the wheatbelt of Western Australia. Aust. J. Ecol. 15, 219-226 https://doi.org/10.1111/j.1442-9993.1990.tb01530.x
  2. Abensperg-Traun, M. 1991. Seasonal changes in activity of subterranean termite species (Isoptera) in Western Australian habitats. Aust. J. Ecol. 16, 331-336 https://doi.org/10.1111/j.1442-9993.1991.tb01061.x
  3. Bettenay, E. A. and M. J. Mulcahy. 1972. Soil and landscape studies in Western Australia. 2. Valley form and surface features of South-West drainage division. J. Geol. Soc. Austral. 18, 359-369 https://doi.org/10.1080/00167617208728774
  4. Bevege, D. I. 1978. Biomass and nutrient distribution in indigenous forest ecosystems. Technical Paper No. 6, Dept.of Forestry, Queensland
  5. Hill, G. F. 1921. The white ant pest in Northern Australia. Bull. 21, Advisory Council Science and Industry, Melbourne
  6. Hill, G. F. 1922. On some Australian termites of the genera Drepanotermes, Hamitermes and Leucotermes. Bull. Entomol. Res. 12, 363-399 https://doi.org/10.1017/S0007485300045041
  7. Hobbs, R. J. and L. Atkins. 1988. Effects of disturbance and nutrient addition on native and introduced annuals in plant communities in Western Australian wheatbelt. Aust. J. Ecol. 13, 171-179 https://doi.org/10.1111/j.1442-9993.1988.tb00966.x
  8. Hobbs, R. J., J. F. Wallace and N. A. Campbell. 1989. Classification of vegetation in the Western Australian wheatbelt using Landsat Mss data. Vegetatio. 80, 91-105 https://doi.org/10.1007/BF00048035
  9. Hutton, J. T. and K. Norrish. 1977. Plant analysis by X-ray spectrometry. II. Elements of atomic number greater than 20. X-ray spectrometry. 6, 12-17 https://doi.org/10.1002/xrs.1300060105
  10. Kalidas, P. and G. K. Veeresh. 1990. Effects of termite foraging on soil fertility. In Veeresh, G. K., B. Mallik and C. A. Viraktamath. pp. 608-609. eds. Social insects and the environment, Proceedings of the 11th International Congress of IUSSI, 1990, India. Oxford & IBH Pub. Co., New Delhi, Bombay and Calcutta
  11. Lobry de Bruyn, L. A. and A. J. Conacher. 1990. The role of termites and ants in soil modification: A review. Aust. J. Soil Res. 28, 55-93
  12. Norrish, K. and J. T. Hutto. 1977. Plant analysis by X-ray spectrometry. I. Low atomic number elements, Sodium to Calcium. X-ray spectrometry. 6, 6-11 https://doi.org/10.1002/xrs.1300060104
  13. O'Connell, A. M. 1977. Automated X-ray fluorescence analysis. Technical Paper No. 2. Commonwealth Scientific and Industrial Research Organisation, Australia
  14. Park, H. C., J. D. Majer, R. J. Hobbs and T. U. Bae. 1993. Harvesting rate of the termite, Drepanotermes tamminensis (Hill) within native woodland and shrubland of the Western Australian wheatbelt. Ecol. Res. 8, 269-275 https://doi.org/10.1007/BF02347186
  15. Park, H. C. 1994. The role of the wheatbelt termite, Drepanotermes tamminensis (Hill), in nutrient cycling within native woodland and shrubland of the Western Australian wheatbelt., Ph.D. Thesis, Curtin University, Perth, Australia
  16. Park, H. C. 2004. Quantification of population of an Australian termite, Drepanotermes tamminensis (Hill), within a Western Australian wheatbelt. Kor. J. Soil Zool. 9, 16-23
  17. Watson, J. A. L. and D. H. Perry. 1981. The Australian harvester termites of the genus Drepanotermes (Isoptera: Termitinae). Aust. J. Zool. 78, 1-153
  18. Watson, J. A. L., R. A. Barrett and J. P. Green. 1988. Growth of the mounds of the Australian harvester termites, Drepanotermes perniger (Froggatt). Sociobiology 14, 217-244
  19. Zar, J. H. 1984. Biostatistical analysis. Prentice-Hall, New Jersey