Two-Dimensional Hydrodynamic and Water Quality Simulations for a Coinjunctive System of Daecheong Reservoir and Its Downstream

대청호와 하류하천 연속시스템의 2차원 수리·모의

  • Jung, Yong Rak (Department of Environmental Engineering, Chungbuk National University) ;
  • Chung, Se Woong (Department of Environmental Engineering, Chungbuk National University) ;
  • Ryu, In Gu (Department of Environmental Engineering, Chungbuk National University) ;
  • Choi, Jung Kyu (Department of Environmental Engineering, Chungbuk National University)
  • Received : 2008.06.27
  • Accepted : 2008.08.07
  • Published : 2008.09.30

Abstract

Most of our rivers are fragmented by the presence of at least one large dam. Dams are often the most substantial controller of the flow regimes and aquatic environments of natural river system. The quality of downstream water released from a stratified reservoir is highly dependent on upstream reservoir water quality. Thus, an integrated modeling approach is more efficient, compared to fragmented modeling approach, and necessary to better interpret the impact of dam operation on the down stream water quality. The objectives of this study were to develop an integrated reservoir-river modeling system for Daecheong Reservoir and its downstream using a two-dimensional laterally averaged hydrodynamic and water quality model, and evaluate the model's performance against field measurement data. The integrated model was calibrated and verified using filed data obtained in 2004 and 2006. The model showed satisfactory performance in predicting temporal variations of water stage, temperature, and suspended solid concentration. In addition, the reservoir-river model showed efficient computation time as it took only 3 hours for one year simulation using personal computer (1.88 Ghz, 1.00 GB RAM). The suggested modeling system can be effectively used for assisting integrated management of reservoir and river water quality.

Keywords

References

  1. 김윤희, 김범철, 최광순, 서동일(2001). 2차원 수리모델(CEQUAL-W2)을 이용한 소양호 수온 성층현상과 홍수기 밀도류 이동 현상의 모델링. 상하수도학회지, 15(1), pp. 40-49
  2. 서동일, 윤종욱, 이재운(2008). QUAL2E, QUAL2K 및 CAP 모델을 이용한 금강 하류 하천구간 정상상태 수질모델링 결과 비교 분석. 상하수도학회지, 22(1), pp. 121-129
  3. 서동일, 이은형(2003). 불연속적으로 흐르는 소하천을 위한 CAP 수질모델의 개발. 상하수도학회지, 17(3), pp. 372-377
  4. 서동일, 이종현, 이은형, 고익환(2004). QUAL2E를 이용한 금강 하류의 수질 모델링 및 오차 원인 분석. 대한환경공학회지, 26(8), pp. 933-940
  5. 신재기, 조경제(2000). 금강 하구호에서 수질의 계절 변동과 오염도. 한국육수학회지, 33(3), pp. 251-259
  6. 유선재, 김종구, 권태연, 이석모(1999). 금강의 부영양화 현상에 관한 연구. 한국환경과학회지, 8(2), pp. 155-160
  7. 정세웅(2004a). 성층화된 저수지로 유입하는 탁류의 공간분포 특성 및 연직 2차원 모델링. 대한환경공학회지, 26(90), pp. 970-978
  8. 정세웅(2004b). 저수지 플러싱 방류 효과분석을 위한 비정상상태 하천수질모형의 적용. 한국수자원학회논문집, 37(10), pp. 857-868
  9. 정세웅, 오정국, 고익환(2005). CE-QUAL-W2 모형을 이용한 저수지 탁수의 시공간 분포 모의. 한국수자원학회논문집, 38(8), pp. 655-654 https://doi.org/10.3741/JKWRA.2005.38.8.655
  10. 정세웅, 이흥수, 윤성완, 예령, 이준호, 추창오(2007). 홍수시 대청호 유역에 발생하는 착수의 물리적 특성. 한국물환경학회지, 23(6), pp. 934-944
  11. 정세웅, 이흥수, 정용락(2008a). 입자크기 분포를 고려한 부력침강 저수지 밀도류의 탁도 모델링. 한국물환경학회지, 24(3), pp. 365-377
  12. 정세웅, 정용락, 고익환, 김남일(2008b). 실시간 저수지 탁수 감시 및 관리를 위한 의사결정지원시스템 개발 및 검증: 대청댐 사례. 한국수자원학회논문집, 41(3), pp. 293-303 https://doi.org/10.3741/JKWRA.2008.41.3.293
  13. 조경제, 신재기(1998). 낙동강 하류에서 동.하계 무기 N.P 영양염류와 식플랑크톤의 동태. korean J.Limnol., 31(1), pp. 67-75
  14. 한건연, 이을래(2002). 한강하류부에서의 2차원 수질모형의 개발 및 적용. 한국수자원학회논문집, 35(3), pp. 261-274
  15. 한국농촌공사(2006). 남양호 오염물질 유달율 산정 및 퇴적물 용출특성 연구
  16. 한국수자원공사(2004). 2004년 대청댐 일원 수문기초조사 보고서
  17. 한국수자원공사(2007). 다목적댐 실무편람
  18. 홍성민, 정인균, 이준우, 김성준(2004). SMS를 이용한 경안천 하류구간의 하천흐름 분석. 한국지리정보학회지, 7(1), pp. 94-104
  19. Bartholow, L., Hanna, R. B., Saito, L., Lieberman, D., and Horn, M. (2001). Simulated Limnological effects of the Shasta lake temperature control device. Environmental management, 27(4), pp. 609-626 https://doi.org/10.1007/s0026702324
  20. Barillier, A., Garnier, J., and Coste, M. (1993). Experimental reservoir water release: impact on the water quality on a river 60 km downstream(upper seine river, France). Water Research, 27(4), pp. 635-643 https://doi.org/10.1016/0043-1354(93)90173-F
  21. Berger, C. J., Robert, L., Annear, Jr., and Wells, S. A. (2002). Upper Spokane River Model : Model Calibration, 1991 and 2000, U.S. Army Corps of Engineers
  22. Byren, B. A. and Davies, B. R. (1989). The effect of stream regulation on the physico-chemical properties of the palmiet river, South Africa. Regulated Rivers: Research & Management, 3(1), pp. 107-121 https://doi.org/10.1002/rrr.3450030111
  23. Chapra, S. C. (1997). Surface water quality modeling. McGraw- Hill, New York
  24. Chung, S. W. and Gu, R. (1998). Two dimensional simulations of contaminant currents in stratified reservoir. J. Hydr. Eng., 124(7), pp. 704-711 https://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(704)
  25. Chung, S. W., Oh, J. K., and Ko, I. H. (2006). Calibration of CE-QUAL-W2 for a monomictic reservoir in monsoon climate area. Water Sci. & Tech., 54(12), pp. 29-37
  26. Cole, T. M. and Wells, S. A. (2004). CE-QUAL-W2: A Two Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.2 User Manual, Instruction Report EL 03 1, U.S. Army Corps of Engineers. USA
  27. Gippel, C. J. (1995). Potential of turbidity monitoring for measuring the transport of suspended solids in streams. Hydrol. Process., 9, pp. 83-97 https://doi.org/10.1002/hyp.3360090108
  28. Lewis, J. (1996). Turbidity-controlled suspended sediment sampling for runoff-event load estimation. Water Resources Research, 32(7), pp. 2299-2310 https://doi.org/10.1029/96WR00991
  29. Martin, J. L. (1986). Water quality study of proposed regulation dam downstream of Wolf Creek Dam, Cumberland River, Kentucky. Miscellaneous Paper EL-86-4, US Army Corps of Engineers, Waterway Experiment Station, MS, USA
  30. Martin, J. L. and McCutcheon, S. C. (1999). Hydrodynamics and Transport for Water Quality Modeling, CRC Press, Inc
  31. Palmer, R. W. and O'Keeffe, J. H. (1990). Downstream effects of impoindments on the water chemistry of the Buffalo River (Eastern Cape), South Africa. Hydrobiologia, 202, pp. 71-83 https://doi.org/10.1007/BF02208128
  32. Pozo, J., Orive, E., Fraile, H., and Basaguren, A. (1997). Effect of the Cernadilla-Valparaiso reservoir system on the River Tera. Regulated Rivers, 13, pp. 57-73 https://doi.org/10.1002/(SICI)1099-1646(199701)13:1<57::AID-RRR427>3.0.CO;2-W
  33. Stanford, J. A. and Hauer, F. R. (1992). Mitigating the impacts of stream and lake regulation in the Flathead River catchment, Montana, USA: An ecosystem perspective. Aquatic conservation: Marine and Freshwater Ecosystems, 2(1), pp. 35-63 https://doi.org/10.1002/aqc.3270020104
  34. Stanford, J. A., Ward, J. V., Liss, W. J., Friddell, C. A., Williams, R. N., Lichatowich, J. A., and Coutant, C. C. (1996). A general protocol for restoration of regulated rivers. Regulated Rivers: Research & Management, 12, pp. 391-413 https://doi.org/10.1002/(SICI)1099-1646(199607)12:4/5<391::AID-RRR436>3.0.CO;2-4
  35. Sullivan, A. B., Rounds, S. A., Sobieszczyk, S., and Bragg, H. M. (2007). Modeling hydrodynamics, water temperature, and suspended sediment in Detroit Lake, Oregon : U.S. Geological Survey Scientific Investigations Report 2007-5008, VA, USA
  36. Ward, J. V. and Stanford, J. A. (1984). The regulated stream as a testing ground for ecological theory. Regulated Rivers, pp. 23-38