Effect of Solvents on the Structure of Electrospun PVP Fiber

PVP의 전기방사 섬유 제조에서 용매에 따른 구조 변화

  • Park, Ju-Young (Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University) ;
  • Lee, In-Hwa (Department of Environmental Engineering, BK21 Team for Biohydrogen Production, Chosun University)
  • 박주영 (조선대학교 환경공학과 BK21 바이오가스기반 수소생산 전문인력양성사업팀) ;
  • 이인화 (조선대학교 환경공학과 BK21 바이오가스기반 수소생산 전문인력양성사업팀)
  • Received : 2008.04.07
  • Accepted : 2008.08.01
  • Published : 2008.10.10

Abstract

Electrospun of PVP (polyvinylpyrrolidone) ultra fine fibers were fabricated using various solvents including methanol, ethanol, 2-propanol, butanol, acetone, methylene chloride, and DMF, which possess different properties such as boiling point, dielectric constant, and dipole moment. Electrospun PVP fiber was influenced by viscosity, conductivity, and surface tension of spinning solution. Therefore, the electrospun PVP fiber was successfully prepared under critical conditions of viscosity > $0.114kg/m{\cdot}s$, conductivity > 1.02 mS/m, surface tension < 30.0 mN/m. In case of an ethanol solvent system, average diameter of PVP fiber increased from 1701 nm to 5454 nm as increased the applied voltage from 10 kV to 20 kV.

폴리비닐피로디온을 서로 다른 끓는점, 유전상수, 쌍극자모멘트를 갖는 다양한 용매(메탄올, 에탄올, 2-프로판올, 부탄올, 아세톤, 메틸렌클로라이드 및 DMF)에 용해시켜 전기방사를 시도하여 섬유의 특성을 연구하였다. 전기 방사된 폴리비닐피로디온은 방사용액의 점도, 전기전도도 및 표면장력에 영향을 받는다. 점도가 $0.114kg/m{\cdot}s$ 이상, 전기전도도는 1.02 mS/m 이상, 표면장력은 30.0 mN/m 이하에서 섬유가 형성되었다. 에탄올 용매계에서 폴리비닐피로디온의 평균직경은 인가전압이 10 kV에서 20 kV 증가시킴에 따라 1710에서 5454 nm까지 증가하였다.

Keywords

Acknowledgement

Supported by : 조선대학교

References

  1. Q. Yang, Z. Li, Y. Hong, Y. Y Zhao, S. Qiu, C. Wang, and Y. Wei, Journal of Polymer Science; Part B; Polymer Physics, 42, 3721 (2004) https://doi.org/10.1002/polb.20222
  2. D. R. Chang, Y. J. Cho, and G. S. Heo, Textile Science and Engineering, 14, 245, (2006)
  3. S. Ramakrishna, K. Fujihara, W. E. Teo, T. C. Lim, and M. Zuwei, An Introduction Electrospinning and Nanofibers, pp. 101, World Scientific Publishing Company, Singapore (2005)
  4. M. Bognizki, T. Frese, M. Steinhart, A. Greiner, J. H. Wendorff, A. Schape, and M. Hellwing, Polym Eng Sci, 41, 982 (2001) https://doi.org/10.1002/pen.10799
  5. N. Wiwat, N, Siaysunee, J. Wirat, M. Santi, and S. Supapan, Material Science and Engineering B, 131, 147 (2006) https://doi.org/10.1016/j.mseb.2006.04.030
  6. J. Yuh, J. C. Nino, and W M. Sigmund, Material, 59, 3645 (2005)
  7. J. Yuh, L. Perez, W. M. Sigmund, and J. C. Nino, Physica E, 37, 254 (2007) https://doi.org/10.1016/j.physe.2006.09.013
  8. G. T. Kim, Y. J. Hwang, Y. C. Ahn, H. S. Shin, J. K. Lee, and C. M. Soung, Korean J. Chem. Eng., 22, 147 (2005) https://doi.org/10.1007/BF02701477
  9. X. H. Zhong, K. S. Kim, D. F. Fang, S. F. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002) https://doi.org/10.1016/S0032-3861(02)00275-6
  10. H. Liu and Y. L. Heieh, Journal of Polymer Science; Part B: Polymer Physics, 40, 2119 (2002) https://doi.org/10.1002/polb.10261
  11. H. Fong, I. Chun, and D. H. Reneker, Polymer, 40, 4585 (1999) https://doi.org/10.1016/S0032-3861(99)00068-3
  12. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. B. Tan, Polymer, 42, 261 (2001) https://doi.org/10.1016/S0032-3861(00)00250-0
  13. H. J. Sim and S. H. Lee, J. Korean Fiber Soc., 41, 414 (2004)
  14. S. H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, polymer, 46, 6128 (2005) https://doi.org/10.1016/j.polymer.2005.05.068