DOI QR코드

DOI QR Code

Analysis on the association between EEG and 2-deoxy-2-[18F]-D-glucose (FDG)-PET findings in children with epilepsy

소아 간질 환아에서 뇌파와 PET과의 연관성에 대한 분석

  • Hur, Yun Jung (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Lee, Joon Soo (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Lee, Jong Doo (Department of Radiology, Yonsei University College of Medicine) ;
  • Kim, Heung Dong (Department of Pediatrics, Yonsei University College of Medicine)
  • 허윤정 (연세대학교 의과대학 소아과학교실) ;
  • 이준수 (연세대학교 의과대학 소아과학교실) ;
  • 이종두 (연세대학교 의과대학 영상의학과학교실) ;
  • 김흥동 (연세대학교 의과대학 소아과학교실)
  • Received : 2007.10.10
  • Accepted : 2007.11.30
  • Published : 2008.03.15

Abstract

Purpose : We performed EEG and PET on children with epilepsy concomitantly in order to evaluate the effects of epileptiform and non-epileptiform discharge of EEG on glucose metabolism. Methods : Seventy three children with epilepsy who had PET and EEG simultaneously were included in our study. The subjects were classified in two ways: (1) based on the frequency of epileptiform discharge and (2) the severity of non-epileptiform discharge. We evaluated the clinical aspects of their seizures, the severity of focal slow waves during the interictal period with the frequency of spikes or sharp waves in order to compare with the PET results. Results : The subjects were divided by the frequency of epileptiform discharge, with 13 in the no/rare group, 7 in the occasional group, and 53 children in the frequent group. The concordant rates with PET in each group were 0%, 42.9%, and 67.9%, respectively, showing high correlations with the frequency of epileptiform discharge (P<0.05, r=0.491). The subjects as divided by the severity of non-epileptiform discharge were 15 in the no group, 25 in the infrequent group, 17 in the intermediate group, and 16 in the continuous group. The concurrence rates with PET for each group were 13.3%, 52.0%, 64.7%, and 68.8%, respectively, also showing a high correlation with the severity of non-epileptiform discharge (P<0.05, r= 0.365). Conclusion : Epileptiform discharge and non-epileptiform discharge in EEG showed a certain association with hypometabolism in PET. We recommend EEG to reduce false lateralization and to localize lesions in cases of high frequency and severity.

목 적 : FDG-PET에서 발작기와 발작간기에 따라 뇌혈류량에 따른 대사의 변화는 다양하게 나타날 수 있다. 이에 저자들은 뇌파를 통해 발작기와 발작간기를 구분하고 발작간기의 간질파와 비간질파가 포도당 대사에 어떤 영향을 미치는지를 분석하기 위해 PET과 동시에 뇌파를 시행하여 PET의 결과와 뇌파를 비교 분석하고자 한다. 방 법 : 우리는 소아 간질 환아 중에서 PET과 동시에 뇌파를 시행한 73명을 대상으로 임상적 발작 및 발작간기의 간질파와 비간질파의 빈도, 심각도 정도를 분류하여 PET의 결과와 비교 분석하였다. 그리고 수술을 시행한 환자에서 PET과 뇌파 결과의 일치 유무에 따른 조직병리의 연관성에 대해서도 분석하였다. 결 과 : 간질파의 빈도는 없음/드뭄, 간헐성, 빈발성 그룹으로 분류하였으며 PET의 포도당 대사 증가 또는 감소의 병변과의 일치율은 각각 없음/드뭄은 0%, 간헐성은 42.9%, 빈발성은 67.9 % 이었다(P<0.05, r=0.491). 비간질파의 심한 정도는 없음, 드뭄, 중등도, 지속성 그룹으로 분류하였으며 PET 결과와의 일치율은 13.3%, 52.0%, 64.7%, 68.8%로 각 변수들의 빈도 차이는 의미 있게 분석되었다(P<0.05, r=0.365). FDG 추적자가 흡수되는 동안 임상적 발작이 있었던 환아는 3명 이었으며 모두 발작기의 PET 영상소견인 대사 증가소견을 보였다. 무증상의 발작이 있었던 2명의 환아 중 1명은 간질 발작기와 발작간기의 대사가 혼합되는 소견을 보였다. 수술을 시행한 환아는 10명으로 6명은 PET 결과와 뇌파의 병변이 일치하였으며 6명 중에서 4명은 비디오 뇌파, 뇌 자기공명영상과도 일치 소견을 보였다. 이들 모두 수술 후 발작은 멈추었으며 조직검사상 뇌피질 이형성증 소견 또는 미세반응 소견을 보였다. 결 론 : PET과 동시에 뇌파를 시행함으로써 발작기의 경우 무증상의 경련, 임상적 경련을 명확히 구분할 수 있었으며 국소 서파의 심각도와 다극파나 높은 빈도의 극파 또는 예파를 정확히 파악하여 false lateralization의 판독을 최소화할 수 있었다.

Keywords

References

  1. Cross JH. Epilepsy surgery in childhood. Epilepsia 2002;43 Suppl 3:S65-70 https://doi.org/10.1046/j.1528-1157.43.s.3.6.x
  2. Snead OC 3rd. Surgical treatment of medically refractoryepilepsy in childhood. Brain Dev 2001;23:199-207 https://doi.org/10.1016/S0387-7604(01)00204-2
  3. Engel J. Intracerebral recordings; Organization of the human epileptogenic region. J Clin Neurophysiol 1993;10:90-8 https://doi.org/10.1097/00004691-199301000-00010
  4. Engel J. Surgery for seizures. N Engl J Med 1996;334:647-52 https://doi.org/10.1056/NEJM199603073341008
  5. Engel J, Henry TR, Risinger MW, Mazziotta JC, Sutherling WW, Levesque MF et al. Presurgical evaluation for partial epilepsy: relative contributions of chronic depth-electrode recordings versus FDG-PET and scalp-sphenoidal ictal EEG. Neurology 1990;40:1670-7 https://doi.org/10.1212/WNL.40.11.1670
  6. Swartz BE, Brown C, Mandelkern MA, Khonsari A, Patell A, Thomas K, et al. The use of 2-deoxy-2-[$^{18}F$]fluro-D-glucose (FDG-PET) positron emission tomography in the routine diagnosis of epilepsy. Mol Imaging Biol 2002;4:245-52 https://doi.org/10.1016/S1095-0397(01)00057-7
  7. Carne RP, O'Brien TJ, Kilpatrick CJ, MacGregor LR, Hicks RJ, Murphy MA, et al. MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome. Brain 2004;127:2276-85 https://doi.org/10.1093/brain/awh257
  8. Juhasz C, Chugani DC, Muzik O, Watson C, Shah J, Shah A, et al. Relationship between EEG and positron emission tomography abnormalities in clinical epilepsy. J Clin Neurophysiol 2000;17:29-42 https://doi.org/10.1097/00004691-200001000-00004
  9. Henry TR, Engel jr, Mazziotta JC. Clinical evaluation of interictal fluorine-18-fluorodeoxygluose PET in partial epilepsy. J Nucl Med 1993;34:1892-8
  10. Engel J, Brown WJ, Kuhl DE, Phelps ME, Mazziotta JC, Crandall PH. Pathological findings underlying focal temporal lobe hypometabolism in partial epilepsy. Ann Neurol 1982;12:518-28 https://doi.org/10.1002/ana.410120604
  11. Hong SB, Han HJ, Roh SY, Seo DW, Kim SE, Kim MH. Hypometabolism and interictal spikes during positron emission tomography scanning in temporal lobe epilepsy. Eur Neurol 2002;48:65-70 https://doi.org/10.1159/000062985
  12. Van Bogaert P, Wikler D, Damhaut P, Szliwowski HB, Goldman S. Cerebral glucose metabolism and centrotem poral spikes. Epilepsy Res 1998;29:123-7 https://doi.org/10.1016/S0920-1211(97)00072-7
  13. Erbayat Altay E, Fessler AJ, Gallagher M, Attarian HP, Dehdashti F, Vahle VJ, et al. Correlation of severity of FDG-PET hypometabolism and interictal regional delta slowing in temporal lobe epilepsy. Epilepsia 2005;46:573-6 https://doi.org/10.1111/j.0013-9580.2005.08204.x
  14. Koutroumanidis M, Binnie CD, Elwes RD, Polkey CE, Seed P, Alarcon G, et al. Interictal regional slow activity in temporal lobe epilepsy correlates with lateral temporal hypometabolism as imaged with 18FDG PET: neurophysiological and metabolic implications. J Neurol Neurosurg Psychiatry 1998;65:170-6 https://doi.org/10.1136/jnnp.65.2.170
  15. Chugani HT, Rintahaka PJ, Shewmon DA. Ictal patterns of cerebral glucose utilization in children with epilepsy. Epilepsia 1994;35:813-22 https://doi.org/10.1111/j.1528-1157.1994.tb02517.x
  16. Engel J Jr, Kuhl DE, Phelps ME, Mazziotta JC Interictalcerebral glucose metabolism in partial epilepsy and its relation to EEG changes. Ann Neurol 1982;12:510-7 https://doi.org/10.1002/ana.410120603
  17. Handforth A, Finch DM, Peters R, Tan AM, Treiman DM. Interictal spiking increases 2-deoxy[l4C]glucose uptake and c-fos-like reactivity. Ann Neurol 1994;35:724-31 https://doi.org/10.1002/ana.410350614
  18. Bittar RG, Andermann F, Olivier A, Dubeau F, Dumoulin SO, Pike GB, et al. Interictal spikes increase cerebral glucose metabolism and blood flow: a PET study. Epilepsia 1999;40:170-8 https://doi.org/10.1111/j.1528-1157.1999.tb02071.x
  19. Chugani HT, Shewmon DA, Khanna S, Phelps ME. Interictal and postictal focal hypermetabolism on positron emissiontomography. Pediatr Neurol 1993;9:10-5 https://doi.org/10.1016/0887-8994(93)90003-U
  20. Asano E, Benedek K, Shah A, Juhasz C, Shah J. Chug ani DC, et al. Is intraoperative electrocorticography reliable in children with intractable neocortical epilepsy? Epilepsia 2004;45:1091-9 https://doi.org/10.1111/j.0013-9580.2004.65803.x
  21. Chug ani HT, Shewmon DA, Sankar R, Chen BC, Phelps ME. Infantile spasms: II. Lenticular nuclei and brain stem activation on positron emission tomography. Ann Neurol 1992;31:212-9 https://doi.org/10.1002/ana.410310212
  22. Chugani HT, Shewmon DA, Peacock Wj, Shields WD, Mazziotta JC, Phelps ME. Surgical treatment of intractable neonatal-onset seizures: the role of positron emission tomography. Neurology 1988;38:1178-88 https://doi.org/10.1212/WNL.38.8.1178
  23. Barrington SF, Koutroumanidis M, Agathonikou A, Marsden PK, Binnie CD, Polkey CE, et al. Clinical value of "Ictal" FDG-positron emission tomography and the routine use of simultaneous scalp EEG studies in patientswith intractable partial epilepsies. Epilepsia 1998;39:753-66 https://doi.org/10.1111/j.1528-1157.1998.tb01162.x
  24. Sperling MR, Alavi A, Reivich M, French JA, O'Connor MJ. False lateralization of temporal lobe epilepsy with FDG positrone mission tomography. Epilepsia 1995;36:722-7 https://doi.org/10.1111/j.1528-1157.1995.tb01052.x