The PPLA Motif of Glycogen Synthase Kinase 3β Is Required for Interaction with Fe65

  • Lee, Eun Jeoung (School of Science Education, Chungbuk National University) ;
  • Hyun, Sunghee (Department of Pre-medicine, Eulji University School of Medicine) ;
  • Chun, Jaesun (Department of Biology Education, Korea National University of Education) ;
  • Shin, Sung Hwa (School of Science Education, Chungbuk National University) ;
  • Lee, Kyung Eun (School of Science Education, Chungbuk National University) ;
  • Yeon, Kwang Hum (Department of Biology Education, Korea National University of Education) ;
  • Park, Tae Yoon (Graduate School of Education, Yonsei University) ;
  • Kang, Sang Sun (School of Science Education, Chungbuk National University)
  • Received : 2008.01.11
  • Accepted : 2008.02.05
  • Published : 2008.07.31

Abstract

Glycogen synthase kinase $3{\beta}$ (GSK $3{\beta}$) is a serine/threonine kinase that phosphorylates substrates such as ${\beta}$-catenin and is involved in a variety of biological processes, including embryonic development, metabolism, tumorigenesis, and cell death. Here, we present evidence that human GSK $3{\beta}$ is associated with Fe65, which has the characteristics of an adaptor protein, possessing a WW domain, and two phosphotyrosine interaction domains, PID1 and PID2. The GSK $3{\beta}$ catalytic domain also contains a putative WW domain binding motif ($^{371}PPLA^{374}$), and we observed, using a pull down approach and co-immunoprecipitation, that it interacts physically with Fe65 via this motif. In addition, we detected co-localization of GSK $3{\beta}$ and Fe65 by confocal microscopy, and this co-localization was disrupted by mutation of the putative WW domain binding motif of GSK $3{\beta}$. Finally, in transient transfection assays interaction of GSK $3{\beta}$ (wt) with Fe65 induced substantial cell apoptosis, whereas interaction with the GSK $3{\beta}$ AALA mutant ($^{371}AALA^{374}$) did not, and we noted that phosphorylation of the Tyr 216 residue of the GSK $3{\beta}$ AALA mutant was significantly reduced compared to that of GSK $3{\beta}$ wild type. Thus, our observations indicate that GSK $3{\beta}$ binds to Fe65 through its $^{371}PPLA^{374}$ motif and that this interaction regulates apoptosis and phosphorylation of Tyr 216 of GSK $3{\beta}$.

Keywords

Acknowledgement

Supported by : Korea Science and Engineering Foundation

References

  1. Beals, C.R., Sheridan, C.M., Turck, C.W., Gardner, P., and Crabtree, G.R. (1997). Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275, 1930-1934 https://doi.org/10.1126/science.275.5308.1930
  2. Borg, J.P., Ooi, J., Levy, E., and Margolis, B. (1996). The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol. Cell. Biol. 16, 6229-6241 https://doi.org/10.1128/MCB.16.11.6229
  3. Chen, H.I., and Sudol, M. (1995). The PTB1 domain of Yesassociated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc. Natl. Acad. Sci. USA 92, 7819-7823
  4. Chu, B., Soncin, F., Price, B.D., Stevenson, M.A., and Calderwood, S.K. (1996). Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J. Biol. Chem. 271, 30847-30857 https://doi.org/10.1074/jbc.271.48.30847
  5. Delcommenne, M., Tan, C., Gray, V., Rue, L., Woodgett, J., and Dedhar, S. (1998). Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl. Acad. Sci. USA 95, 11211-11216
  6. Diehl, J.A., Cheng, M., Roussel, M.F., and Sherr, C.J. (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499-3511 https://doi.org/10.1101/gad.12.22.3499
  7. Doble, B.W., and Woodgett, J.R. (2003). GSK-3: tricks of the trade for a multi-t asking kinase. J. Cell Sci. 116, 1175-1186 https://doi.org/10.1242/jcs.00384
  8. Duilio, A., Zambrano, N., Mogavero, A.R., Ammendola, R., Cimino, F., and Russo, T. (1991). A rat brain mRNA encoding a transcriptional activator homologous to the DNA binding domain of retroviral integrases. Nucleic Acids Res. 19, 5269-5274 https://doi.org/10.1093/nar/19.19.5269
  9. Duilio, A., Faraonio, R., Minopoli, G., Zambrano, N., and Russo, T. (1998). Fe65L2: a new member of the Fe65 protein family interacting with the intracellular domain of the Alzheimer's betaamyloid precursor protein. Biochem. J. 330, 513-519 https://doi.org/10.1042/bj3300513
  10. Ermekova, K.S., Zambrano, N., Linn, H., Minopoli, G., Gertler, F., Russo, T., and Sudol, M. (1997) The PTB1 domain of neural protein FE65 interacts with proline-rich motifs in LSF, the mammalian homolog of Drosophila enabled. J. Biol. Chem. 272, 32869-32877 https://doi.org/10.1074/jbc.272.52.32869
  11. Ermekova, K.S., Chang, A., Zambrano, N., De, Candia. P., Russo, T., and Sudol, M. (1998) Proteins implicated in Alzheimer disease. The role of FE65, a new adapter which binds to betaamyloid precursor protein. Adv. Exp. Med. Biol. 446, 161-180
  12. Espanel, X., and Sudol, M. (1999). A single point mutation in a group I PTB1 domain shifts its specificity to that of group II PTB1 domains. J. Biol. Chem. 274, 17284-17289 https://doi.org/10.1074/jbc.274.24.17284
  13. Fiore, F., Zambrano, N., Minopoli, G., Donini, V., Duilio, A., and Russo, T. (1995). The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer's amyloid precursor protein. J. Biol. Chem. 270, 30853-30856 https://doi.org/10.1074/jbc.270.52.30853
  14. Guenette, S., Chang, Y., Hiesberger, T., Richardson, J.A., Eckman, C.B., Eckman, E.A., Hammer, R.E., and Herz, J. (2006). Essential roles for the FE65 amyloid precursor protein-interacting proteins in brain development. EMBO J. 25, 420-431 https://doi.org/10.1038/sj.emboj.7600926
  15. Hanger, D.P., Hughes, K., Woodgett, J.R., Brion, J.P., and Anderso, B.H. (1992). Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett. 147, 58-62 https://doi.org/10.1016/0304-3940(92)90774-2
  16. Kikuchi, A., Yamamoto, H., and Kishida, S. (2007). Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal. 19, 659-671 https://doi.org/10.1016/j.cellsig.2006.11.001
  17. Kim, L., Liu, J., and Kimmel, A.R. (1999). The novel tyrosine kinase ZAK1 activates GSK3 to direct cell fate specification. Cell 99, 399-408 https://doi.org/10.1016/S0092-8674(00)81526-3
  18. King, G.D., and Scott Turner, R. (2004). Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer's disease risk? Exp. Neurol. 185, 208-219 https://doi.org/10.1016/j.expneurol.2003.10.011
  19. Lee, E.J., Hyun, S., Chun, J., and Kang, S.S. (2007). Human NIMArelated kinase 6 is one of the Fe65 WW domain binding protein. Biochem. Biophys. Res. Commun. 358, 783-788 https://doi.org/10.1016/j.bbrc.2007.04.203
  20. McLoughlin, D.M., Irving, N.G., and Miller, C.C. (1998). The Fe65 and X11 families of proteins: proteins that interact with the Alzheimer's disease amyloid precursor protein. Biochem. Soc. Trans. 26, 497-500 https://doi.org/10.1042/bst0260497
  21. Minopoli, G., Stante, M., Napolitano, F., Telese, F., Aloia, L., De Felice, M., Di Lauro, R., Pacelli, R., Brunetti, A., Zambrano, N., and Russo, T. (2007). Essential roles for Fe65, Alzheimer amyloid precursor-binding protein, in the cellular response to DNA damage. J. Biol. Chem. 282, 831-835 https://doi.org/10.1074/jbc.C600276200
  22. Moule, S.K., Welsh, G.I., Edgell, N.J., Foulstone, E.J., Proud, C.G., and Denton, R.M. (1997). Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-adrenergic agonists in rat epididymal fat cells. Activation of protein kinase B by wortmannin-sensitive and -insensitive mechanisms. J. Biol. Chem. 272, 7713-7719 https://doi.org/10.1074/jbc.272.12.7713
  23. Nakaya, T., and Suzuki, T. (2006). Role of APP phosphorylation in FE65-dependent gene transactivation mediated by AICD. Genes Cells 11, 633-645 https://doi.org/10.1111/j.1365-2443.2006.00968.x
  24. Russo, T., Faraonio, R., Minopoli, G., De Candia, P., De Renzis, S., and Zambrano, N. (1998). Fe65 and the protein network centered around the cytosolic domain of the Alzheimer's betaamyloid precursor protein. FEBS Lett. 434, 1-7 https://doi.org/10.1016/S0014-5793(98)00941-7
  25. Sudol, M., Sliwa, K., and Russo, T. (2001). Functions of PTB1 domains in the nucleus. FEBS Lett. 490, 190-195 https://doi.org/10.1016/S0014-5793(01)02122-6
  26. Tanahashi, H., and Tabira, T. (2002). Characterization of an amyloid precursor protein-binding protein Fe65L2 and its novel isoforms lacking phosphotyrosine-interaction domains. Biochem. J. 367, 687-895 https://doi.org/10.1042/BJ20020562
  27. Wang, Q.M., Roach, P.J., and Fiol, C.J. (1994). Use of a synthetic peptide as a selective substrate for glycogen synthase kinase-3. Anal. Biochem. 220, 397-402 https://doi.org/10.1006/abio.1994.1356
  28. Xu, Y., Kim, H.S., Joo, Y., Choi, Y., Chang, K.A., Park, C.H., Shin, K.Y., Kim, S., Cheon, Y.H., Baik, T.K., et al. (2007). Intracellular domains of amyloid precursor-like protein 2 interact with CP2 transcription factor in the nucleus and induce glycogen synthase kinase-3beta expression. Cell Death Differ. 1, 79-91
  29. Yang, Z., Cool, B.H., Martin, G.M., and Hu, Q. (2006). A dominant role for FE65 (APBB1) in nuclear signaling. J. Biol. Chem. 281, 4207-4214 https://doi.org/10.1074/jbc.M508445200
  30. Zambrano, N., Minopoli, G., De Candia, P., and Russo, T. (1998). The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/LBP1. J. Biol. Chem. 273, 20128-20133 https://doi.org/10.1074/jbc.273.32.20128