Acknowledgement
Supported by : Korea Science and Engineering Foundation
References
- Beals, C.R., Sheridan, C.M., Turck, C.W., Gardner, P., and Crabtree, G.R. (1997). Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science 275, 1930-1934 https://doi.org/10.1126/science.275.5308.1930
- Borg, J.P., Ooi, J., Levy, E., and Margolis, B. (1996). The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol. Cell. Biol. 16, 6229-6241 https://doi.org/10.1128/MCB.16.11.6229
- Chen, H.I., and Sudol, M. (1995). The PTB1 domain of Yesassociated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc. Natl. Acad. Sci. USA 92, 7819-7823
- Chu, B., Soncin, F., Price, B.D., Stevenson, M.A., and Calderwood, S.K. (1996). Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J. Biol. Chem. 271, 30847-30857 https://doi.org/10.1074/jbc.271.48.30847
- Delcommenne, M., Tan, C., Gray, V., Rue, L., Woodgett, J., and Dedhar, S. (1998). Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl. Acad. Sci. USA 95, 11211-11216
- Diehl, J.A., Cheng, M., Roussel, M.F., and Sherr, C.J. (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499-3511 https://doi.org/10.1101/gad.12.22.3499
- Doble, B.W., and Woodgett, J.R. (2003). GSK-3: tricks of the trade for a multi-t asking kinase. J. Cell Sci. 116, 1175-1186 https://doi.org/10.1242/jcs.00384
- Duilio, A., Zambrano, N., Mogavero, A.R., Ammendola, R., Cimino, F., and Russo, T. (1991). A rat brain mRNA encoding a transcriptional activator homologous to the DNA binding domain of retroviral integrases. Nucleic Acids Res. 19, 5269-5274 https://doi.org/10.1093/nar/19.19.5269
- Duilio, A., Faraonio, R., Minopoli, G., Zambrano, N., and Russo, T. (1998). Fe65L2: a new member of the Fe65 protein family interacting with the intracellular domain of the Alzheimer's betaamyloid precursor protein. Biochem. J. 330, 513-519 https://doi.org/10.1042/bj3300513
- Ermekova, K.S., Zambrano, N., Linn, H., Minopoli, G., Gertler, F., Russo, T., and Sudol, M. (1997) The PTB1 domain of neural protein FE65 interacts with proline-rich motifs in LSF, the mammalian homolog of Drosophila enabled. J. Biol. Chem. 272, 32869-32877 https://doi.org/10.1074/jbc.272.52.32869
- Ermekova, K.S., Chang, A., Zambrano, N., De, Candia. P., Russo, T., and Sudol, M. (1998) Proteins implicated in Alzheimer disease. The role of FE65, a new adapter which binds to betaamyloid precursor protein. Adv. Exp. Med. Biol. 446, 161-180
- Espanel, X., and Sudol, M. (1999). A single point mutation in a group I PTB1 domain shifts its specificity to that of group II PTB1 domains. J. Biol. Chem. 274, 17284-17289 https://doi.org/10.1074/jbc.274.24.17284
- Fiore, F., Zambrano, N., Minopoli, G., Donini, V., Duilio, A., and Russo, T. (1995). The regions of the Fe65 protein homologous to the phosphotyrosine interaction/phosphotyrosine binding domain of Shc bind the intracellular domain of the Alzheimer's amyloid precursor protein. J. Biol. Chem. 270, 30853-30856 https://doi.org/10.1074/jbc.270.52.30853
- Guenette, S., Chang, Y., Hiesberger, T., Richardson, J.A., Eckman, C.B., Eckman, E.A., Hammer, R.E., and Herz, J. (2006). Essential roles for the FE65 amyloid precursor protein-interacting proteins in brain development. EMBO J. 25, 420-431 https://doi.org/10.1038/sj.emboj.7600926
- Hanger, D.P., Hughes, K., Woodgett, J.R., Brion, J.P., and Anderso, B.H. (1992). Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci. Lett. 147, 58-62 https://doi.org/10.1016/0304-3940(92)90774-2
- Kikuchi, A., Yamamoto, H., and Kishida, S. (2007). Multiplicity of the interactions of Wnt proteins and their receptors. Cell Signal. 19, 659-671 https://doi.org/10.1016/j.cellsig.2006.11.001
- Kim, L., Liu, J., and Kimmel, A.R. (1999). The novel tyrosine kinase ZAK1 activates GSK3 to direct cell fate specification. Cell 99, 399-408 https://doi.org/10.1016/S0092-8674(00)81526-3
- King, G.D., and Scott Turner, R. (2004). Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer's disease risk? Exp. Neurol. 185, 208-219 https://doi.org/10.1016/j.expneurol.2003.10.011
- Lee, E.J., Hyun, S., Chun, J., and Kang, S.S. (2007). Human NIMArelated kinase 6 is one of the Fe65 WW domain binding protein. Biochem. Biophys. Res. Commun. 358, 783-788 https://doi.org/10.1016/j.bbrc.2007.04.203
- McLoughlin, D.M., Irving, N.G., and Miller, C.C. (1998). The Fe65 and X11 families of proteins: proteins that interact with the Alzheimer's disease amyloid precursor protein. Biochem. Soc. Trans. 26, 497-500 https://doi.org/10.1042/bst0260497
- Minopoli, G., Stante, M., Napolitano, F., Telese, F., Aloia, L., De Felice, M., Di Lauro, R., Pacelli, R., Brunetti, A., Zambrano, N., and Russo, T. (2007). Essential roles for Fe65, Alzheimer amyloid precursor-binding protein, in the cellular response to DNA damage. J. Biol. Chem. 282, 831-835 https://doi.org/10.1074/jbc.C600276200
- Moule, S.K., Welsh, G.I., Edgell, N.J., Foulstone, E.J., Proud, C.G., and Denton, R.M. (1997). Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-adrenergic agonists in rat epididymal fat cells. Activation of protein kinase B by wortmannin-sensitive and -insensitive mechanisms. J. Biol. Chem. 272, 7713-7719 https://doi.org/10.1074/jbc.272.12.7713
- Nakaya, T., and Suzuki, T. (2006). Role of APP phosphorylation in FE65-dependent gene transactivation mediated by AICD. Genes Cells 11, 633-645 https://doi.org/10.1111/j.1365-2443.2006.00968.x
- Russo, T., Faraonio, R., Minopoli, G., De Candia, P., De Renzis, S., and Zambrano, N. (1998). Fe65 and the protein network centered around the cytosolic domain of the Alzheimer's betaamyloid precursor protein. FEBS Lett. 434, 1-7 https://doi.org/10.1016/S0014-5793(98)00941-7
- Sudol, M., Sliwa, K., and Russo, T. (2001). Functions of PTB1 domains in the nucleus. FEBS Lett. 490, 190-195 https://doi.org/10.1016/S0014-5793(01)02122-6
- Tanahashi, H., and Tabira, T. (2002). Characterization of an amyloid precursor protein-binding protein Fe65L2 and its novel isoforms lacking phosphotyrosine-interaction domains. Biochem. J. 367, 687-895 https://doi.org/10.1042/BJ20020562
- Wang, Q.M., Roach, P.J., and Fiol, C.J. (1994). Use of a synthetic peptide as a selective substrate for glycogen synthase kinase-3. Anal. Biochem. 220, 397-402 https://doi.org/10.1006/abio.1994.1356
- Xu, Y., Kim, H.S., Joo, Y., Choi, Y., Chang, K.A., Park, C.H., Shin, K.Y., Kim, S., Cheon, Y.H., Baik, T.K., et al. (2007). Intracellular domains of amyloid precursor-like protein 2 interact with CP2 transcription factor in the nucleus and induce glycogen synthase kinase-3beta expression. Cell Death Differ. 1, 79-91
- Yang, Z., Cool, B.H., Martin, G.M., and Hu, Q. (2006). A dominant role for FE65 (APBB1) in nuclear signaling. J. Biol. Chem. 281, 4207-4214 https://doi.org/10.1074/jbc.M508445200
- Zambrano, N., Minopoli, G., De Candia, P., and Russo, T. (1998). The Fe65 adaptor protein interacts through its PID1 domain with the transcription factor CP2/LSF/LBP1. J. Biol. Chem. 273, 20128-20133 https://doi.org/10.1074/jbc.273.32.20128