H-ZSM-5 촉매에서 n-옥탄의 촉매분해반응: 소성 및 스팀 처리 효과

Catalytic Cracking of n-Octane over H-ZSM-5 Catalysts: Effect of Calcination and Steam Treatment

  • 이현주 (충북대학교 화학공학과) ;
  • 신채호 (충북대학교 화학공학과) ;
  • 최원춘 (한국화학연구원 신화학연구단 미세화학기술연구팀) ;
  • 이철위 (한국화학연구원 신화학연구단 미세화학기술연구팀) ;
  • 박용기 (한국화학연구원 신화학연구단 미세화학기술연구팀)
  • Lee, Hyun-Ju (Department of Chemical Engineering, Chungbuk National University) ;
  • Shin, Chae-Ho (Department of Chemical Engineering, Chungbuk National University) ;
  • Choi, Won Choon (New Chemistry Research Division, Korea research Institute of Chemical Technology) ;
  • Lee, Chul Wee (New Chemistry Research Division, Korea research Institute of Chemical Technology) ;
  • Park, Yong Ki (New Chemistry Research Division, Korea research Institute of Chemical Technology)
  • 투고 : 2007.11.21
  • 심사 : 2008.01.22
  • 발행 : 2008.04.30

초록

경질올레핀을 제조하기 위한 n-옥탄의 접촉분해반응에서 H-ZSM-5 촉매의 소성 및 스팀 처리 영향을 $550{\sim}750^{\circ}C$ 범위에서 조사하였다. 소성 및 스팀 처리 온도를 높이면 H-ZSM-5 촉매의 비표면적, 기공부피 및 강산점이 줄어들었다. $650^{\circ}C$ 이상에서 스팀 처리는 제올라이트 구조 내 알루미늄의 탈알루미늄화 및 미세기공의 붕괴로 강산점이 소멸되어, 미세 기공부피가 줄어들며 입자 간 결합에 의한 중기공이 형성되었다. $^{27}Al$$^{29}Si$ MAS NMR 스펙트럼으로부터 스팀 처리로 발생하는 탈알루미늄의 과정을 검토하였다. 제올라이트 격자의 알루미늄이 사면체 배위구조 알루미늄 ${\rightarrow}$ 5개 배위구조 알루미늄 ${\rightarrow}$ 팔면체 배위구조 알루미늄으로 변화과정을 거침을 알 수 있었다. n-옥탄 접촉 분해반응의 전환율, 경질올레핀 수율 및 에틸렌/프로필렌 비가 H-ZSM-5의 소성 및 스팀 처리 온도가 증가함에 따라 감소하는 경향을 나타내었으며, 스팀 처리는 소성 처리보다 활성저하 정도가 더욱 심하여 $750^{\circ}C$에서 24시간 스팀 처리 후에는 H-ZSM-5가 촉매로서의 기능을 상실하여 열분해반응에 근접하는 전환율, 경질올레핀 수율 및 에틸렌/프로필렌 비의 결과를 나타내었다.

Catalytic cracking of n-octane was carried out over H-ZSM-5 zeolite catalysts after calcination with air and steaming with 100% steam in the temperature range of $550-750^{\circ}C$ for 24 h and compared with the results of thermal cracking. The increase of calcination and steaming temperature resulted in the decrease of surface area, pore volume, and strong acid sites, which was mainly caused by the dealumination of H-ZSM-5 framework. It was found by $^{27}Al$ and $^{29}Si$ MAS NMR that the dealumination was proceeded through the transformation process of tetrahedral framework Al${\rightarrow}$penta-cordinated Al ${\rightarrow}$ octahedral framework Al and the phenomena was much more severe in steaming conditions than that of calcination. In the catalytic cracking of n-octane, as the temperatures of calcination and steaming were increased, the conversion of n-octane, the selectivity of light olefins and ethylene to propylene ratio were decreased due to the dealumination of framework aluminum resulting the loss of acidic strengths. The conversion, selectivity of light olefins and ethylene to propylene ratio reached almost to the level of thermal cracking after steaming at $750^{\circ}C$ for 24 h.

키워드

과제정보

연구 과제번호 : 이산화탄소 저감 및 처리 기술개발

연구 과제 주관 기관 : 과학기술부

참고문헌

  1. Park, Y. K., Jeon, J. Y., Han, S. Y., Kim J. R. and Lee, C. W., "Catalytic Cracking of Naphtha into Light Olefins," Korean Chem. Eng. Res., 41, 549-557(2003)
  2. Zhao, G., Teng, J., Zhang, Y., Xie, Z., Yue, Y., Chen, Q. and Tang, Y., "Synthesis of ZSM-48 Zeolites and Their Catalytic Performance in $C_{4}$-olefin Cracking Reactions," Appl. Catal. A: Gen., 299, 167-174(2006) https://doi.org/10.1016/j.apcata.2005.10.022
  3. Abbot, J. and Dunstan, P. R., "Catalytic Cracking of Linear Paraffins: Effects of Chain Length," Ind. Eng. Chem. Res., 36, 76-82 (1997) https://doi.org/10.1021/ie960255e
  4. Smirniotis, G. P. and Ruckenstein, E., "Comparison of the Performance of ZSM-5, $\beta$ Zeolite, Y, USY, and Their Composites in the Catalytic Cracking of n-Octane," Ind. Eng. Chem, Res., 33, 800-813(1994) https://doi.org/10.1021/ie00028a004
  5. Lischke, G., Shreier, E., Parlitz, B., Pitsch, I., Lohse, U. and Woettke, M., "Cubic and Hexagonal Faujasites with varing Si/Al ratios II. Catalysis of n-heptane Cracking," Appl. Catal. A: Gen., 129, 57-67(1995) https://doi.org/10.1016/0926-860X(95)00093-3
  6. Corma, A. and Orchilles, A. V., "Current Views on the Mechanism of Catalytic Cracking," Micropor. Mesopor. Mater., 35, 21-30(2000) https://doi.org/10.1016/S1387-1811(99)00205-X
  7. Mao, R. L. Melancon, S., Gauthier-Campbell, C. and Kletnieks, P., "Selective Deep Catalytic Cracking Process (SDCC) of Petroleum Feedstocks for the Production of Light Olefins: I. The Catlever Effect Obtained With a Two Reaction-Zones System on the Conversion of n-Hexane," Catal. Lett., 73, 181-186(2001) https://doi.org/10.1023/A:1016685523095
  8. Melancon, S., Mao, R. L. Kletnieks, P., Ohayon, D., Intem, S., Saberi, M. A. and McCann, D., "Selective Deep Catalytic Cracking Process of Hydrocarbon Feedstocks for the Production of Light Olefins: II. Cooperative Effect of Thermal Cracking and Catalytic Reactions Observed in a 1-Zone Reactor," Catal. Lett., 80, 103-109(2002) https://doi.org/10.1023/A:1015448106870
  9. Liu, C., Gao, X., Zhang, Z., Zhang, H., Sun, S. and Deng, Y. "Surface Modification of Zeolite Y and Mechanism for Reducing Naphtha Olefin Formation in Catalytic Cracking Reaction," Appl. Catal. A: Gen., 264, 225-228(2004) https://doi.org/10.1016/j.apcata.2003.12.048
  10. Xue, N., Chen, X., Nie, L., Guo. X., Ding, W., Chen, Y., Gu, M. and Xie, Z., "Understanding the Enhancement of Catalytic Performance for Olefin Cracking: Hydrothermally Stable Acids in P/HZSM-5," J. Catal., 248, 20-28(2007) https://doi.org/10.1016/j.jcat.2007.02.022
  11. Blasco, T., Corma, A. and Martinez-Triguero, J., "Hydrothermal Stabilization of ZSM-5 Catalytic-Cracking Additives by Phosphorus Addition," J. Catal., 237, 267-277(2006) https://doi.org/10.1016/j.jcat.2005.11.011
  12. Jung, J. S., Kim, T. J. and Seo, G., "Catalytic Cracking of n- Octane over Zeolites with Different Pore Structures and Acidities," Korean J. Chem. Eng., 21(4), 777-781(2004) https://doi.org/10.1007/BF02705520
  13. Chen, D., Sharma, S., Cardona-Martinez, N., Dumesic, J. A., Bell, V. A., Hodge, G. D. and Madon, R. J., "Acidity Studies of Fluid Catalytic Cracking Catalysts by Microcalorimetry and Infrared Spectroscopy," J. Catal., 136, 392-402(1992) https://doi.org/10.1016/0021-9517(92)90070-X
  14. Jeong, J. H., Lee J. W. and Rhee, H. K., "A Study of Methanol Conversion to Light Olefins over ZSM-5 Catalyst," Korean Chem. Eng. Res. 31, 279-286(1993)
  15. Chang, C. D., Lang, W. H. and Smith, R. L., "The Conversion of Methanol and Other O-Compounds to Hydrocarbons over Zeolite Catalysts," J. Catal., 56, 169-173(1979) https://doi.org/10.1016/0021-9517(79)90103-9
  16. Kaeding, W. W. and Butter, S. A., "Production of Chemicals from Methanol: I. Low Molecular Weight Olefins," J. Catal., 61, 155-164(1980) https://doi.org/10.1016/0021-9517(80)90351-6
  17. Kaeding, W. W., Chu, C., Young, L. B., Weistein, B. and Butter, S. A., "Selective Alkylation of Toluene with Methanol to Produce para-Xylene," J. Catal., 67, 159-174(1981) https://doi.org/10.1016/0021-9517(81)90269-4
  18. Martens, J. A., Perez-Pariente, J., Sastre, E., Corma, A. and Jacobs, P. A., "Isomerization and Disproportionation of m- Xylene Selectivities Induced by the Void Structure of the Zeolite Framework," Appl. Catal., 45, 85-101(1988) https://doi.org/10.1016/S0166-9834(00)82395-7
  19. Degnan, T. F., Chitnis G. K. and Schipper, P. H., "History of ZSM-5 Fluid Catalytic Cracking Additive Development at Mobil," Micropor. Mesopor. Mater., 35, 245-252(2000) https://doi.org/10.1016/S1387-1811(99)00225-5
  20. Treacy, M. M. J. and Higgins, J. B., Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed. Elsevier, Amsterdam(2007)
  21. Lippens, B. C. and de Boer, J. H., "Studies on Pore Systems in Catalysis V. The t Method," J. Catal., 4, 319-323(1965) https://doi.org/10.1016/0021-9517(65)90307-6
  22. De Boer J. H., Linsen, B. G., and Osinga, T. H., "Studies on Pore Systems in catalysis VI. The Universal t Curve," J. Catal., 4, 643-648(1965) https://doi.org/10.1016/0021-9517(65)90263-0
  23. De Boer J. H., Linsen, B.G., van der Plas, Th., and Zondervan, G.J., "Studies on Pore Systems in Catalysis VII. Description of the Pore Dimensions of Carbon Blacks by the t Method," J. Catal., 4, 649-653(1965) https://doi.org/10.1016/0021-9517(65)90264-2
  24. Lee, S.-H., Lee, D.-K., Shin, C.-H., Park, Y.-K., Wright, P. A. Lee, W. M. and Hong, S. B., "Synthesis, Characterization, and Catalytic Properties of Zeolites IM-5 and NU-88," J. Catal., 215, 151-170(2003) https://doi.org/10.1016/S0021-9517(02)00178-1
  25. Corma, A., Martínez-Triguero, J., Valencia, S., Benazzi, E. and Lacombe, S., "IM-5: A Highly Thermal and Hydrothermal Shape-Selective Cracking Zeolite," J. Catal., 206, 125-133(2002) https://doi.org/10.1006/jcat.2001.3469
  26. Fyfe, C. A., Gobbi, G. C., Klinowski, J., Thomas J. M. and Ramdas, S., "Resolving Crystallographically Distinct Tetrahedral Sites in Silicate and ZSM-5 by Solid-State NMR," Nature, 296, 530-533(1982) https://doi.org/10.1038/296530a0
  27. Wojciehowski, B. W. and Corma, A., Catalytic Cracking: Catalysts, Chemistry, and Kinetics, Chemical Industries Series, 25, Dekker, California(1986)