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An improved Ordering and Recovery Policy for Reusable Items
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재활용품 제고시스템에 대한 주문 및 재생정책의 개선방안
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This paper studies a joint EOQ and EPQ model in which a stationary demand can be satisfied by recycled 
products as well as newly purchased products. The model assumes that a fixed quantity of the used products are 
collected from customers and later recovered for reuse. The recovered products are regarded as perfectly new 
ones. We also assume that the number of orders for newly purchasing items and the number of recovery setups 
in a cycle can be mutually independent integers. Under these assumptions, we develop an optimization model 
obtaining the economic order quantity for newly procured products, the optimal lot size for the recovery process, 
and the sequence of the orders and the setups, simultaneously. And then a simple solution procedure to find a 
local optimal control parameter set is proposed. To validate the model and the solution procedure, finally, some 
computational experiments are presented.
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1. Introduction

Product recovery is an area that is receiving in-
creasing attention. Metal scrap brokers, waste paper 
recycling and deposit systems for soft drink bottles 
are the examples that have been around for a long 
time. In these cases recovery of the used products 
is economically more attractive than disposal. In 
the recent past, furthermore, the growth of environ-
mental concerns has given increasing attention to 
reuse (Fleischmann et al., 1997). The environmental 
costs during the whole lifecycle of industrial prod-
ucts already play an increasingly important role in 
the calculation of total production costs (Spengler 
et al., 1997).

There are different types of recovery : repair, re-

furbishing, remanufacturing, cannibalization and re-
cycling (Thierry et al., 1995). In this paper we fo-
cus on the third type, in which an item is brought 
up to an “as-new” quality. <Figure 1> shows the 
general framework of the situation studied in this 
paper. The supplier meets a stationary demand for 
an item, and he/she receives used products returned 
from the customers. For fulfilling the demand, he/ 
she has two alternatives : Either he/she orders new 
products externally or he/she recovers old products 
and brings them back to “as-new” condition. In this 
system, the supply of new products is from the 
outside of the system and the replenishment rate is 
infinite (i.e. instant replenishment), while the recov-
ery process is performed inside the system and the 
replenishment rate is finite (i.e. gradual replenish-
ment). Washed-and-sterilized and newly purchased 
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bottles in a soft drink company are good examples. 
The objective of this inventory management system 
is to control external component orders as well as 
the internal component recovery process to guaran-
tee a required service level and to minimize fixed 
and variable costs.

recoverabe
inventory

serviceable 
inventory

recovery 
process customer scrap

return

our system outside procurement

Figure 1. Framework of the inventory system

A number of authors have proposed inventory 
models and policies for these systems. Review pa-
pers are provided by Guide et al. (1997), Fleischmann 
et al. (1997), van der Lann et al. (1999b) and Guide 
(2000). According to these review papers, the mod-
els can be classified into two groups; deterministic 
and stochastic models.

The first deterministic model is studied by Schrady 
(1967). He assumes constant demand and return 
rates and fixed lead times for external orders and 
recovery. The costs considered are fixed setup costs 
for orders and recovery process and linear holding 
costs for serviceable and recoverable inventories. For 
this model he proposes a control policy with fixed 
lot sizes serving demand as far as possible from 
recovered products. Expressions for the optimal lot 
sizes for order and recovery are derived similar to 
the classical EOQ formula.

Nahmias and Rivera (1979) extend Schrady’s mod-
el to the case that the recovery rate is finite. An-
other extension to the Schrady’s model is proposed 
by Mabini et al. (1992). They consider stockout ser-
vice level constraints and a multi-item system where 
items share the same repair facility. For these ex-
tended models numerical solution methods are pro-
posed.

Richter (1996a, b) considers a slightly different 
model. He assumes that there is no continuous 
flow of used items to the recovery shop. Used 
items are collected in a location and brought back 
to the recovery shop at the end of each collection 
interval. This collection interval coincides with a 
recovery cycle in the recovery shop. The recovery 
cycle consists of a number of recovery batches fol-

lowed by a number of orders. This policy leads 
to extra holding costs, since recovery of returned 
items has to be postponed until the end of the 
interval.

Teunter (2001) also generalizes the Schrady’s (1967) 
result in two ways. First, he considers more gen-
eral policies. These policies alternate a number of 
manufacturing batches with a number of recovery 
batches. Second, he distinguishes between the hold-
ing cost rates for manufactured and recovered items, 
whereas Schrady used the same rate for both.

Koh et al. (2002) generalize the work of Nahmias 
and Rivera (1979). They allow the recovery rate to 
be both smaller and larger than the demand rate, 
and then they consider the system that has one set-
up for recovery (or one order for new products) and 
many orders for new products (or many setups for 
recovery). For all four combinations, they derive a 
closed-form expression for the average total cost 
which can be used to determine the optimal lot 
sizes numerically. But their policy has a drawback 
in recovery schedule. Teunter (2004) points out the 
problem and proposes a partly heuristic approach 
to solve it. Later, Konstantaras and Papachristos 
(2007) propose an exact solution method to solve 
the same problem.

Stochastic models that treat demands and returns 
as stochastic processes have been also widely dis-
cussed too. Cho and Parlar (1991) survey the liter-
ature related to optimal maintenance and replace-
ment models for multi-unit systems. Cohen et al. 
(1980) study a system where recoverable and serv-
iceable inventory coincide because returned prod-
ucts can be reused directly. They assume that a 
fixed share of the products issued in a given peri-
od is returned after a fixed lead time. Later, their 
system are modified to the system with random re-
turns by Kelly and Silver (1989). 

In contrast to Cohen’s model, Heyman (1977) 
deals with a system where recoverable and service-
able inventories are distinct. Simpson (1978) proves 
that the optimum solution structure for an n-period 
repairable inventory problem is completely defined 
by three period dependent values and proposed a 
solution methodology. Muckstadt and Isaac (1981) 
consider a continuous review model with explicit 
modelingof a remanufacturing facility with non-zero 
lead times. In their research the demands and re-
turns occur as a Poisson process and there are no 
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assumptions about repair time distribution or the 
number of repair servers. Kim and Shin (1993) de-
velop an algorithm to find the optimal spare in-
ventory level for multiechelon repairable inventory 
system, and their result are extended by Kim et al. 
(1998) to the system in which the inventories are 
at the central depot as well as the several bases.

Van der Laan et al. (1996a) present more general 
model that has four control parameters and they 
(1996b) develop two approximations for the aver-
age costs of an ( , ) remanufacturable inventory 
model. Recently, van der Laan et al. (1997, 1999a, 
1999b) study various manufacturing/remanufacturing 
systems with PUSH and PULL disposal strategies. 
Wong et al. (2005) develop a multi-dimensional 
Markovian model to estimate several performance 
measures in a single-item, multi-company, repair-
able inventory system where complete pooling of 
stock is permitted among the companies. 

This paper deals with the deterministic model, 
which can also be classified into several groups by 
two criteria. The first one is the replenishment rate 
of new and recovered products. As stated earlier, 
this study deals with infinite replenishment for new 
products and finite recovery rate. Nahmias and Ri-
vera (1979) deals with the same situation. On the 
other hand, the studies assuming both the infinite 
replenishment rates include Schrady (1967), Mabini 
et al. (1992), Richter (1996a, b), and Teunter (2001). 
And the studies with both the finite replenishment 
rates are Teunter (2004) and Konstantaras and Pa-
pachristos (2007).

The second criterion is the order and recovery 
policies used. Using the notation of Teunter (2004), 
the policies can be represented by ( , ), in which 
P means the number of orders for newly purchas-
ing (or producing) items and   means the number 
of recovery setups in a cycle. Most of existing 
studies have used (1, R) and/or (P, 1) policies ex-
cept Richter (1996a, b) who considered the (P, R) 
policy that alternates P orders for new items and R 
recovery setups. Since Richter (1996a, b) assumed 
that all of the recoverable items collected in a cy-
cle are brought to the recovery shop at the end of 
the cycle, the consecutive recovery setups can be 
reasonable. But, in general case, the sequence of P 
orders and R setups should be arbitrary. This study 
deals with this general case. Under this situation, 
we obtain i) the economic order quantity for newly 

procured products, ii) the optimal lot size for the 
recovery process, iii) the sequence of the orders 
and the setups, simultaneously.

The paper is organized as follows. In the follow-
ing section an optimal cost model is derived and a 
search algorithm to find an optimal ordering and 
recovery policy is proposed. Section 3 reports the 
results of computational experiments to validate the 
models and a solution algorithm proposed in this 
paper. Finally, we conclude the paper with a sum-
mary and some directions for future research in 
section 4. 

2. Optimal Ordering and Recovery 
Problem

In this section, we deal with the problem of finding 
an optimal order policy for newly purchased items 
and an optimal recovery schedule for recoverable 
items, simultaneously. Before generation of the mod-
el, we state the assumptions and notations.

2.1 Assumptions
(1) Demand for serviceable items in a unit time 

is a known constant (d ).
(2) Quantity of used items collected in a unit 

time from customers is a known constant (r).
(3) The repair quantity in a unit time is a known 

constant ( p).
(4) All of the cost parameters are known constants.
(5) Lead time for purchasing new items and set-

up time for recovery process are known 
constants. And we can ignore them.

(6) Shortages for serviceable items are not allo-
wed.

(7) It is more economical to repair items than to 
purchase new ones.

(8) Demand rate is greater than collection rate 
(  ).

(9) The repair rate is greater than demand rate 
(  ).

(10) Lot sizes of the recovery process are same 
through time ().

(11) Order sizes of newly procured items are 
same through time ().
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2.2 Notations
Known parameters：
：collection rate, [units]/[time]
：repair rate, [units]/[time]
：demand rate of the serviceable items, [units] 

/[time]
：setup cost for recovery process, [$]/[setup]
：ordering cost for new items, [$]/[order]
：inventory holding cost for the recoverable 

items, [$]/[unit]/[time]
：inventory holding cost for the serviceable 

items, [$]/[unit]/[time]

Decision variables：
：cycle time of the model, i.e. time interval be-

tween time points when the inventory level of 
recoverable items is zero (See <Figure 2>).

：number of orders for new items during a 
cycle, ≥ 

：number of setups in the recovery shop dur-
ing a cycle, ≥ 

Dependent variables:
：lot size for the recovery process
：order quantity for newly procured items
：Inventory level of the serviceable item when 

a recovery processing batch is finished
：inventory level of recoverable items when 

  recovery process begins, i = 1, 2, …, n
：time point when   recovery process begins 

in a cycle, i = 1, 2, …, n
：time to use   units of serviceable items, 
    

：time to use one lot of newly purchased 
items,    

：time length of a recovery processing run, 
      

2.3 Model

The problem in this paper is an extension to Koh 
et al. (2002). They used the (1, R) and (P, 1) pol-
icies, but in this paper, there can be one or more 
orders for newly purchasing items (i.e.  ≥ , or 
≥   by the notation in this paper) as well as 
one or more setups for recovery process in a cycle 
(i.e. ≥  , or ≥   by the notation in this pa-
per). <Figure 2> shows an example of the system in 
which two orders and three setups occur in a cycle. 

recoverable
inventory

serviceable
inventory

T

R

t1+ t2

R2

R1
R3

r p-r

Q2

I0

d
p-d

t1 t1+ t2+ t3

Figure 2. An inventory flow of the system when 
   and   

In this figure, one can see the total demand of 
serviceable items and the total quantity of recov-
ered items in a cycle are   and  , respectively. 
Since we assumed shortages for serviceable items 
are not allowed, the procurement of new items is 
needed when    . From the assumption (8), 
we can make the following observation.

Observation 1 (Ordering rule for newly purchasing 
items). There should be one or more orders in a 
cycle (i.e. ≥ ). And the order size is as fol-
lows：

 
  (1)

From the lower graph in <Figure 2>, furthermore, 
one can see the inventory holding cost of service-
able items is the same regardless of the sequence 
of the setups and orders. But the upper graph in 
the figure shows that the inventory holding cost of 
recoverable items depends on the sequence. In this 
figure, for example, the inventory holding cost of 
recoverable items will be increased if the second 
order for newly purchasing items is prior to the 
first setup for recovery process. This leads us to 
the following observation.
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Observation 2 (Recovery schedule). If the inventory 
level of recoverable items, when the inventory lev-
el of serviceable items is zero, is less than  , an 
order for newly purchasing items should be rele-
ased. On the other hand, if the inventory level is 
greater than or equal to  , it is more economical 
to start a recovery process.

Since we do not allow shortages for serviceable 
items, the annual revenue is a constant, and thus it 
is enough to consider the system costs only. To 
develop the cost model, we have to find the rela-
tionships between system variables in <Figure 2>. 
First of all, from the assumption (10), 

  
 (2)

From the definition of  , the recovery quantity 
during   period is  , i.e.     and therefore,

  


 
 (3)

Also, the inventory level of recoverable items de-
creases from   (for instance,   in <Figure 2>) 
to zero during   period, i.e.     , and so,

 
  (4)

Next, the inventory level of serviceable items in-
creases from zero to   during   period, i.e.  
  , and so,

 
    


(5)

Similarly, from the definition of   and  ,

  



  (6)

and

  



  (7)

The system costs can be classified into four cate-
gories and each cost term during a cycle can be 
obtained as follows：

(1) Setup cost of recovery process

 (8)

(2) Ordering cost of new items

 (9)

(3) Inventory holding cost for serviceable items







 

    


 







   
 

    


 (10)

(4) Inventory holding cost for recoverable items 
(detailed procedure to get the equation is un-
derlying)


  

 ,  if    ,





 

 
 
 

 

   







 , if ≥  (11)

To find the inventory holding cost for recover-
able items, one should know the area under the 
thick line in the upper graph of <Figure 2>, which 
can be obtained by subtracting the area of  
parallelograms from the area of big triangle whose 

area is 
 . Using equations of two upper lines 

in this big triangle, i.e.     and   
   , one can easily find the value of R as 
follows:

 
  (12)

Also, the    parallelograms are corresponded 
to   setup ( = 1, 2, …,  ) in the recovery 
shop as in <Figure 3>.

Once the values of  and  are given, the 
area of dashed parallelogram in <Figure 3> can be 
obtained by multiplying the length of line  by 
the distance from point A to line CD. First, because
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Figure 3. Area of the   parallelogram

the coordinates of points A and B are (, ) and 
(   ,   ), respectively, the length of the 
line  is 

     
   (13)

On the other hand, it is well known that the dis-
tance from a point ( , ) to a line of equation 

       is  
    . Therefore, 

since the coordinate of the point  and the equa-
tion of the line CD are (, ) and  
     , respectively, the distance from 
point  to line CD is

   
     (14)

Therefore, the area of the   parallelogram is the 
product of equations (13) and (14) as follows：

  

     (15)

Therefore, the inventory holding cost for recover-
able items in a cycle can be expressed as equation 
(11).

The values of  and ,  = 1, 2, …,   , 
vary by system parameter values and cannot be ex-
pressed in a closed form. According to Observation 
2, however, it is enough to compare the inventory 
level of recoverable items with   when the in-
ventory level of serviceable items is zero. At the 
first time point of zero inventory of serviceable 
items,  , however, the inventory level of recover-

able items is  
  , which is less than 

 
  . Therefore, the first time point we 

have to check the inventory level of recoverable 
items is    . We propose an algorithm to find 
the recovery schedule, when   , as follows：

Algorithm Get_Recover_Schedule
Step 1 : Determine   and  .
  Step 1.0 : Set  = 0.
  Step 1.1 : Set  =  + 1.

If       , go to Step 1.1.
Else,      ,    , and go 
to Step 2. 

Step 2 : Determine  and ,  = 2, 3, …,   .
  Step 2.0 : Set  = 1.
  Step 2.1 : If  =   , stop.

Else,  =  + 1,  =        and 
        . 

  Step 2.2 : If    , set  = 0 and go to Step 
2.3.
Else, go to Step 2.1.

  Step 2.3 : Set     ,           , 
and           .
If    , go to Step 2.3.
Else, go to Step 2.1.

End_Of_Algorithm
Once the ’s and ’s are found by the algo-

rithm Get_Recover_Schedule, we can get the total 
cost in a unit time by dividing the sum of these 
four cost terms by the cycle time length as fol-
lows：

   

 







 


  









 

 
 
 

  

    





 

(16)

2.4 Solution Procedure
Although the equation (16) is too complicated to 

be shown its convexity for the three decision varia-
bles, i.e. ,  and  , after calculating many ex-
ample problems, we believe that the equation is a 
unimodal convex function of each variable when 
the other variables are fixed. But it seems to be 
very difficult that the optimal values of the three 
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decision variables are given in closed forms. 
Therefore, we propose a phased search procedure 
to find them. First, it is necessary to find a local 
optimal length of cycle time when the number of 
orders for newly purchasing items () and the 
number of recovery setups () are fixed. To do 
that, we propose a very simple search procedure as 
follows：

Algorithm Get_Cycle_Time
Step 0 : Set      and   (current mini-

mum total cost) = ∞.
Set the optimal cycle time when  
   to the initial search step,  , as fol-
lows：

      


(17)

Step 1 : Set    .
Using equation (16), calculate   for giv-
en   and  .
If ≤  , go to Step 2.
Else, go to Step 3.

Step 2 : Set     and    .
Go to Step 1.

Step 3 : If    (a sufficiently small positive num-
ber), stop.
Else, go to Step 4.

Step 4 : Set     .
Set     and  =∞
Go to Step 1.

End_Of_Algorithm
In this algorithm, the equation (17) is the optimal 

cycle time when    . Because the equation 
(16) is a convex function of T when    , 
one can easily get this equation. 

Next, using the cycle time calculated by the al-
gorithm Get_Cycle_Time and its cost, we can find 
local optimal values of   and  by another sim-
ple search procedure as follows：

Algorithm Get_Best_Policy
Step 0 : Determine the values of the cost parame-

ters  ,  ,    and    as well as the 
system

parameters ,  and . 
Set    and   =∞.

Step 1 : Determine optimal value of  for given .
Step 1.0 : Set    and   (current minimum 

total cost for given m) = ∞.
Step 1.1 : For given  and , find   using 

the algorithm Get_Cycle_Time. 
Step 1.2 : If    , set   ,     

and     . And go to Step 1.1.
Else, go to Step 2.

Step 2 : If     , set   ,    ,  

=  and   . And go to Step 1.
Else, Stop.

End_Of_Algorithm
In this algorithm,   is the current best total 

cost calculated by the algorithm Get_Cycle_Time 
when the cycle time T is a variable and the values 
of m and n are fixed, while   is the current 
minimum total cost when n is a variable and m is 
given and    is the current minimum total cost 
value for the variable m.

2.5 Numerical example
To validate the proposed model and solution pro-

cedure, a number of sample problems were solved. 
One of these problems is as follows：
 = 15,  = 30,  = 150, 
 = $1,000 / recovery setup, 
 = $500 / order for new items, 
 = $1 / recoverable item/time and
 = $10 / serviceable item/time.

Applying these data to the solution procedure, the 
best decision variables can be obtained as follows：

= 3,  = 2,  ≅ 10.54 and  ≅ $664.08.

To compare this result with Koh et al. (2002), 
we tried to find the best recovery and ordering 
schedule under the condition that restricts to only 
one setup or order. As a matter of course, we did 
not use the original model of Koh et al. (2002), 
but used a modified model that reflected the com-
ment of Teunter (2004). The result with the same 
parameter values is as follows：

 = 2,  = 1,  ≅ 6.00 and  ≅ $666.33.

The difference of the two systems in total cost is 
$2.25, which is about 0.34% of the best value of 
the proposed system in this paper.
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Table 1. Effects of  on the system

    
improvement

(%)
3 10 1 596.4 -
6 5 1 613.4 -
9 3 1 628.7 -
12 2 1 643.2 -
15 3(2) 2(1) 664.1 0.34
18 1 1 671.4 -
21 2(1) 3(1) 697.5 0.15
24 1 2 711.6 -
27 1 4 729.7 -

Table 2.  Effects of  on the system

    
improvement

(%)

60 2 1 587.4 -

90 2 1 632.5 -

120 3(2) 2(1) 653.1 0.11

150 3(2) 2(1) 664.1 0.34

180 1 1 673.6 -

210 1 1 678.0 -

240 1 1 681.2 -

270 1 1 683.7 -

300 1 1 685.7 -

3. Computational Experiments

This section shows how the system characteristics 
respond to changes of the parameters. To do this 
we perform a sensitivity analysis, in which one pa-
rameter varies over a range, while all other param-
eters are held constants. Using the data in Section 
2.5, the following are set as standard values of the 
system parameters:  = 30,  = 0.5,  = 5,  =
$1,000 / recovery setup,  = $500 / order for new 
items,  = $1 / recoverable item / unit time, and 
 = 10 / serviceable item/ unit time. <Tables 1> 
through 5 show the effects of the changes in , , 
 ,  , and  , respectively. For example, the 
results of <Table 1> are calculated for ∈{0.1, 
0.2, …, 0.9} = {3, 6, 9, …, 27} when the other 
parameters are fixed to the standard values. 

In each table one can see the optimal number of 

orders for new items in a cycle (i.e. ), optimal 
number of recovery setups in a cycle (i.e. ), and 
total cost in a unit time under the optimal policy 
(i.e.  ). These tables also show the comparison 
results of the ( , ) policy with ( , 1) and (1, ) 
policies. To do this, we calculated the cost im-
provement of the ( , ) policy, and the results are 
given at the rightmost column in each table. For 
example, the fifth row in <Table 1> shows that 
( , ) policy can reduce the total cost in unit time 
by 0.34%. As one can see in the example case of 
Section 2.5, optimal ( , ) values for (1, ) and 
( , 1) policies under the same condition are (2, 1), 
which are expressed in the parentheses at the   
and   columns of the table. Except for the fifth 
and the seventh rows, <Table 1> has no value in 
the rightmost columns, which mean that the cost 
reduction quantity is zero (in other words, the re-
sults for ( , ) policy are same to the results for 
(1, ) and ( , 1) policies). 

Now, the effects of varying parameters are inves-
tigated. According to <Table 1>, as the quantity of 
items collected in a unit time (i.e. ) increases, 1) 
the ratio of the optimal number of orders for new-
ly purchasing items to the number of setups in the 
recovery shop (i.e. ) is decreasing and 2) the 
optimal total cost (i.e.  ) is increasing. Because 
the quantity of newly purchasing items decreases 
and the number of recovery setups needed increase 
when the collection quantity becomes large, the de-
crease of the ratio seems reasonable.

In <Table 2>, we can see the number of orders 
for new items in a cycle (i.e. ) tends to in-
crease when the repair quantity in a unit time (i.e. 
) is small. If  is small, the serviceable inventory 
level when the recovery shop is just finished its 
process is small, and therefore, one more order for 
new item can be needed. From the viewpoint of 
total cost, since the serviceable inventory level be-
comes relatively higher than recoverable inventory 
when  becomes large,    becomes large as  
increase.

<Table 3>～<Table 5> show the system respon-
ses to changes of cost parameters. In <Table 3> 
and <Table 4>, we can see that the   value 
becomes large as the setup cost in the recovery 
shop,  , increases or the ordering cost for newly 
purchasing items,  , decreases. <Table 5> shows 
that both of the integer variables (i.e.   and ) 
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become large when   is increasing. All of these 
observations are predictable results.

Table 3. Effects of   on the system

    
improvement

(%)

200 2(1) 3(2) 454.3 0.36

400 1 1 517.0 -

600 1 1 571.6 -

800 1 1 621.4 -

1,000 3(2) 2(1) 664.1 0.34

1,200 2 1 698.9 -

1,400 2 1 729.9 -

1,600 2 1 759.7 -

1,800 2 1 788.4 -

Table 4. Effects of   on the system

    
improvement

(%)

100 3 1 506.1 -

200 2 1 557.5 -

300 2 1 596.0 -

400 2 1 632.1 -

500 3(2) 2(1) 664.1 0.34

600 1 1 689.3 -

700 1 1 710.6 -

800 1 1 731.2 -

900 1 1 751.2 -

Table 5. Effects of   on the system

    
improvement

(%)

2 1 1 348.6 -

4 1 1 450.0 -

6 1 1 532.4 -

8 1 1 603.7 -

10 3(2) 2(1) 664.1 0.34

12 3(2) 2(1) 719.7 0.39

14 3(2) 2(1) 771.4 0.42

16 3(2) 2(1) 819.8 0.45

18 3(2) 2(1) 865.4 0.47

4. Conclusions

We proposed a model to analyze an inventory sys-
tem where the stationary demand can be satisfied 
by recovered products and newly purchased pro-
ducts. This model extended previous studies to the 
case of variable number of orders for newly pur-
chasing items as well as variable number of setups 
for recovery process within a cycle. We developed 
an optimization model obtaining the economic or-
der quantity for newly procured products, the opti-
mal lot size for the recovery process, and the se-
quence of the orders and the setups, simultaneou-
sly. And then a simple solution procedure to find 
the optimal control parameters was proposed. From 
the computational experiments, we found that the 
results of this study is better than the earlier study 
results in some cases. 

The results in this paper may be extended to the 
following cases. One is the case in which the re-
coverable items are deteriorating. In second case, 
one may assume that the collection rate and/or de-
mand rate are random variables. Final suggestion is 
the problem of dynamic version, in other words, 
the return rate of recoverable items and the de-
mand rate of serviceable items are known but not 
constant through time.
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