Nickel Supported Adsorbent for Removing Carbon Monoxide

일산화탄소 제거를 위한 니켈 담지 흡착제 제조

  • Son, Jung-hwa (Alternative Chemicals/Fuel Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Kim, Young-ho (Fine Chemical Engineering & Chemistry, Chungnam National University) ;
  • Yoon, Songhun (Alternative Chemicals/Fuel Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Park, Yong-Ki (Alternative Chemicals/Fuel Research Center, Korea Research Institute of Chemical Technology (KRICT)) ;
  • Lee, Chul Wee (Alternative Chemicals/Fuel Research Center, Korea Research Institute of Chemical Technology (KRICT))
  • 손정화 (한국화학연구원, 석유대체연구센터) ;
  • 김영호 (충남대학교, 정밀공업화학과) ;
  • 윤성훈 (한국화학연구원, 석유대체연구센터) ;
  • 박용기 (한국화학연구원, 석유대체연구센터) ;
  • 이철위 (한국화학연구원, 석유대체연구센터)
  • Received : 2008.04.26
  • Accepted : 2008.06.05
  • Published : 2008.10.31

Abstract

The Ni based adsorbent was prepared by co-precipitation method and its performance for removing carbon monoxide was investigated. Here, silica, aluminium silicate and ${\gamma}$-alumina were used for carriers of catalyst. $Ni(NO_3)_2{\cdot}6H_2O$ and $Ni(CH_3COO)_2{\cdot}4H_2O$ were utilized for Ni precursors. Precipitants were urea and citric acid. After precipitation of Ni salt on the carrier and following reduction using $H_2$ gas, adsorbent was prepared and its performance was analyzed based on EDS, TPR and XRD experiments. In accordance with change of precipitation agents, Ni salts on carrier, carriers and reduction condition. Adsorbent performance for removing carbon monoxide was investigated. The adsorbent with 54.8 wt% Ni prepared using urea precipitant under reduction condition at $500^{\circ}C$ for 3 h exhibited the best CO removal performance.

실리카, 알루미늄 실리케이트, 감마 알루미나 담체에 $Ni(NO_3)_2{\cdot}6H_2O$$Ni(CH_3COO)_2{\cdot}4H_2O$를 원료로 침전제인 요소와 시트르산을 사용하여 $90^{\circ}C$에서 공침법을 사용하여 흡착제를 제조하였으며 이를 환원시켜 일산화탄소 제거 실험을 수행하였다. 흡착제는 EDS, TPR, XRD 분석을 실시하여 이를 근거로 흡착제의 성능을 해석하였다. 침전제의 종류, 니켈 금속의 담지량, 담체, 니켈 금속의 염, 수소 환원 조건을 변화시켜 최적의 흡착 성능을 보이는 흡착제를 사용하여 실험을 수행하였다. 침전제인 요소에 $Ni(NO_3)_2{\cdot}6H_2O$를 사용하여 실리카 담체에 니켈 54.8 wt%를 담지하여 제조한 흡착제를 $500^{\circ}C$에서 3시간 수소 환원 전처리 후 흡착 실험을 하였을 때 가장 효과적으로 일산화탄소를 제거함을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국화학연구원

References

  1. Liang, Z. H., Zhu, Y. J. and Hu, X. L., "${\beta}$-Nickel Hydroxide Nanosheets and Their Thermal Decomposition to Nickel Oxide Nanosheets," J. Phys. Chem. B, 108, 3488-3491(2004) https://doi.org/10.1021/jp037513n
  2. Xing, W., Li, F., Yan, Z. F. and Lu, G. Q., "Synthesis and Electrochemical Properties of Mesoporous Nickel Oxide," J. Power Sources, 134, 324-330(2004) https://doi.org/10.1016/j.jpowsour.2004.03.038
  3. M, J., N, V., B, R. R., M, M. R., "Optimum Conditions to Prepare High Yield, Phase Pure ${\alpha}-Ni(OH)_2$ Nanoparticles by Urea Hydrolysis and Electrochemical Ageing in Alkali Solutions," J. Power Sources, 150, 272-275(2005) https://doi.org/10.1016/j.jpowsour.2005.02.022
  4. Yoon, Y. G. and Pyun, S. I., "The Electrochemical View of Nickel Hydroxide as Cathode Materials in Alkaline Battery," J. Corros Sci. Soc. Korea, Vol. 24 No. 2(1995)
  5. Kim, M. S. and Kim, K. B., "A Study on the Electrochemical Redox Reaction of Electrochemically Precipitated Nickel Hydroxide," J. Korean Inst, Met. & Mater., Vol. 33, No. 12(1995)
  6. Park, J. S., Yoon, W. L., Lee, H. T. and Seo, D. J., "Purification Catalyst of Reformed Gas and Preparation Method Thereof," Korean Patent Appl., 10-2005-0091477
  7. Hong, S. J., Lim, M. S. and Chun, Y. N., "Study on Hydrogen Production and CO Oxidation Reaction using Plasma Reforming System with PEMFC," Korean Chem. Eng. Res., 45(6), 656-662(2007)
  8. Kwak, C., Park, T. J. and Suh, D. J., "Preferential Oxidation of Carbon Monoxide in Hydrogen-rich Gas over Platinum-cobaltalumina Aerogel Catalysts," Chem. Eng. Sci., 60, 1211-1217(2005) https://doi.org/10.1016/j.ces.2004.07.126
  9. Sakae, T., Toru, S. and Kiyoshi, O., "Complete Removal of Carbon Monoxide in Hydrogen-rich Gas Stream Through Methanation over Supported Metal Catalysts," Int. J. Hydrogen Energy, 29, 1065-1073(2004) https://doi.org/10.1016/j.ijhydene.2003.10.009
  10. Suh, D. J., Kwak, C., Kim, J. H., Kwon, S. M. and Park, T. J., "Removal of Carbon Monoxide form Hydrogen-rich Fuels by Selective Low-temperature Oxidation over Base Metal Added Platinum Catalysts," J. Power Sources, 142, 70-74(2005) https://doi.org/10.1016/j.jpowsour.2004.09.012
  11. Hiroshi, T., Walsh, T. and Wagner, J., "Cross-reference to Related Applications," Korean Patent Appl., 10-2006-7009638
  12. Richardson, J. T. and Dubus, R. J., "Preparation Variable in Nickel Catalysts," J. Catalysis, 54, 207-218(1978) https://doi.org/10.1016/0021-9517(78)90043-X
  13. Ryoji, T., Satoshi, S., Toshiaki, S., Masanori, S. and Nobuyuki, I., "$Ni/SiO_2$ Prepared by Sol-gel Process Using Citric Acid," Microporous and Mesoporous Materials, 66, 197-208(2003) https://doi.org/10.1016/j.micromeso.2003.09.007
  14. Galo, J., Matias, J., Alberto, E. R. and Miguel, A. B., "Synthesis of Nickel Hydroxide by Homogeneous Alkalinization. Precipitation Mechanism," Chem, Mater., 11, 3140-3146(1999) https://doi.org/10.1021/cm9902220
  15. Yazhong, C., Wei, Z., Zongping, S. and Nanping, X., "Nickel Catalyst Prepared Via Glycine Nitrate Process for Partial Oxidation of Methane to Syngas," Catalysis Communications, 9, 1418-1425(2008) https://doi.org/10.1016/j.catcom.2007.12.009
  16. Jasik, A., Wojcieszak, R., Monteverdi, S. and Ziolek, M., "Study of Nickel Catalysts Supported on $Al_2O_3$, $SiO_2$ and $Nb_2O_5$ Oxide," J. Molecular Catalysis A: Chemical, 242, 81-90(2005) https://doi.org/10.1016/j.molcata.2005.07.013
  17. Kim, S. H., Nam, S. W., Lim, T. H. and Lee, H. I., "Effect of Pretreatment on the Activity of Ni Catalyst for CO Removal Reaction by Water-gas Shift and Methanation," Applied Catalysis B: Environmental, 81, 97-104(2008) https://doi.org/10.1016/j.apcatb.2007.12.009
  18. Ito, M., Tagawa, T. and Goto, S., "Suppression of Carbonaceous Depositions on Nickel Catalyst for Carbon Dioxide Reforming of Methane," Applied catalysis A : General, 177, 15-23(1999) https://doi.org/10.1016/S0926-860X(98)00251-8
  19. Praveen, K., Cheekatamalra, William, S., "Selective Low-temPerature Removal of Carbon Monoxide from Hydrogen-rich Fuels over Cu-Ce-Al Catalysts," J. Power Sources, 147, 178-183(2005) https://doi.org/10.1016/j.jpowsour.2005.01.027
  20. Masahiro, W., Hiroyuki, U., Kyoko, O. and Hiroshi, I., "Hydrogen Purification for Fuel Cells: Selective Oxidation of Carbon Monoxide on Pt-Fe/zeolite Catalysts," Applied Catalysis B: Environmental, 46, 595-600(2003) https://doi.org/10.1016/S0926-3373(03)00322-9
  21. Jo, J. S., Lee, S. H. and Moon, H. M., "Apparatus for Refining a Nitrogen Gas and Method Thereof ," Korean Patent Application, 10-2005-0030327
  22. Markowski, M. L. and Bergman, T. J., "Cryogenic System for Producing Ultra-high Purifity Nitrogen," United States Patent Application, 5983667