DOI QR코드

DOI QR Code

Association between PON1 Gene SNPs and Growth and Carcass Traits in Beef Cattle

  • Ji, A.G. (College of Animal Science and Technology, Northwest Sci-Tech University of Agriculture and Forestry) ;
  • Huai, Y.H. (College of Animal Science and Technology, Northwest Sci-Tech University of Agriculture and Forestry) ;
  • Zhou, Z.K. (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Li, Y.J. (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Zhang, L.P. (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Xu, S.Z. (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Gao, X. (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Ren, H.Y. (Institute of Animal Science, Chinese Academy of Agricultural Sciences) ;
  • Chen, J.B. (Institute of Animal Science, Chinese Academy of Agricultural Sciences)
  • Received : 2007.12.09
  • Accepted : 2008.03.26
  • Published : 2008.08.01

Abstract

Paraoxonase-1 (PON1), like lipoprotein lipase (LPL), plays a key role in the metabolism and physiology of mammalian growth. The objectives of this study were to estimate the allele and genotype frequencies at the PON1/EcoRV and PON1/AluI loci in three genetic groups of beef cattle and to determine associations between these polymorphisms and growth and carcass traits. Genotyping was performed on 30 Angus, 32 Hereford and 26 Simmental. The association analysis was carried out using the GLM procedure of SAS 9.1 and the least squares means of the genotypes were compared by the Tukey's test. Animals with AG genotype at the PON1/EcoRV locus had higher weight at the time of entry into the fattening corrals ($329.97{\pm}6.08kg$) and close to the time of slaughter ($577.56{\pm}8.32kg$) and net meat weight ($275.89{\pm}4.05kg$) and fitted tenderness ($3.10{\pm}0.19kg$) (p<0.05). Animals with AA genotype at the PON1/AluI locus had higher weight at the time of entry ($333.37{\pm}8.93kg$) and slaughter ($576.82{\pm}13.18kg$) and net meat weight ($275.49{\pm}6.43kg$) and average daily gain ($0.68{\pm}0.02kg/d$) (p<0.05). The meat color score was also significantly higher (p<0.05). Between genotypes and breeds, there were significant differences observed except for TBW, REMG, MBS, REA and MCS. As a metabolism gene, genotypes of the SNPs of PON1 gene might be reflecting BFT directly, such as $A_eA_eG_aG_a$ genotype in this experiment.

Keywords

References

  1. Busch, C. P., D. D. Ramdath, S. Ramsewak and R. A. Hegele. 1999. Association of PON2 variation with birth weight in Trinidadian neonates of South Asian ancestry. Pharmacogenet. 9(3):351-356. https://doi.org/10.1097/00008571-199906000-00010
  2. Cheong, H. S., D. Yoon, L H. Kim, B. L. Park, H. W. Lee, C. S. Han, E. M. Kim, H. Cho, E R. Chung, I. Cheong and H. D. Shin. 2007. Titin-cap (TCAP) polymorphisms associated with marbling score of beef. Meat Sci. 77:257-263. https://doi.org/10.1016/j.meatsci.2007.03.014
  3. Cole, T. B., R. L. Jampsa, B. J. Walter, T. L. Arndt, R. J. Richter, D. M. Shih, A. Tward, A. J. Lusis, R. M. Jack, L. G. Costa and C. E. Furlong. 2003. Expression of human paraoxonase (PON1) during development. Pharmacogenet. 13(6):357-364. https://doi.org/10.1097/00008571-200306000-00007
  4. Curi, R. A., H. N.de Oliveira, A. C. Silveira and C. R. Lopes. 2005. Association between IGF-I, IGF-IR and GHRH gene polymorphisms and growth and carcass traits in beef cattle. Livest. Prod. Sci. 94:159-167. https://doi.org/10.1016/j.livprodsci.2004.10.009
  5. Curi, R. A., D. A. Palmieri, L. Suguisawa, A. L. J. Ferraz, H. N. de Oliveira, L. R. Furlan, A. C. Silveira and C. R. Lopes. 2006. Effects of GHR gene polymorphisms on growth and carcass traits in Zebu and crossbred beef cattle. Livest. Sci. 101:94-100. https://doi.org/10.1016/j.livprodsci.2005.09.015
  6. Francis, C. Y. and C. Y. Rong. 1999. POPGENE32 VERSION 1.31-Microsoft Window-based Freeware for Population Genetic Analysis. University of Alberta and Tim Boyle, Centre for International Forestry Research. August.
  7. Hakanen, M., H. Lagstrom, T. Kaitosaari, H. Niinikoski, K. Nanto-Salonen, E. Jokinen, L. Sillanmaki, J. Viikari, T. Ronnemaa and O. Simell. 2006. Development of overweight in an atherosclerosis prevention trial starting in early childhood. Int. J. Obes (Lond), 30(4):618-626. https://doi.org/10.1038/sj.ijo.0803249
  8. Harel, M., A. Aharoni and L. Gaidukov. 2004. Structure and evolution of the serum paraoxonase family of detoxifying and anti-atherosclerotic enzymes. Nat. Struct. Mol. Biol. 11:412-419. https://doi.org/10.1038/nsmb767
  9. Jonathan, Q. Purnell, S. W. David, B. Patricia and E. C. David. 2003. Ghrelin levels correlate with insulin levels, insulin resistance, and high-density lipoprotein cholestero but not with gender, menopausal status, or cortiso levels in humans. J. Clin. Endocrinol. Metab, 88(12):5747-5752. https://doi.org/10.1210/jc.2003-030513
  10. Khersonsky, O. and D. S. Tawfik. 2005. Structure-reactivity studies of serum paraoxonase PON1 suggest that its native activity is lactonase. Biochem. 44:6371-6382. https://doi.org/10.1021/bi047440d
  11. Liang, H. Y., B. Y. Wu, D. F. Chen, F. H. Y. Yang, Hu, L. Chen and X. P. Xu. 2002. Association of CYP2E1 and PON2311 polymorphisms in neonates with preterm. Acta. Genetica. Sinica. 29(10):847-853.
  12. Lucio, G. C., B. C. Toby and E. F. Clement. 2006. Geneenvironment interactions: paraoxonase (PON1) and sensitivity to organophosphate toxicity. Lab Med. 37(2):109-114. https://doi.org/10.1309/020XQ8HQJJTTJDK4
  13. Marchegiani, F., M. Marra, F. Olivieri, M. Cardelli, R. W. James, M. Boemi and C. Franceschi. 2008. Paraoxonase 1: Genetics and activities during aging. Rejuvenation Res. 11:113-127. https://doi.org/10.1089/rej.2007.0582
  14. National Center for Biotechnology Information (NCBI). 1999. OMIM Detailed, available from URL:http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=168820.
  15. NRC. 1996. Nutrient requirement of beef cattle. National Academy Press, Washington, DC, USA.
  16. Paul, H. B. 2006. The inflammatory consequences of psychologic stress: Relationship to insulin resistance, obesity, atherosclerosis and diabetes mellitus, type II. Medical Hypotheses, 67:879-891. https://doi.org/10.1016/j.mehy.2006.04.008
  17. Sanghera, D. K., S. Manzi, R. L. Minster, P. Shaw, A. Kao, F. Bontempo and M. I. Kamboh. 2008. Genetic variation in the Paraoxonase-3 (PON3) Gene is Associated with Serum PON1 Activity. Annals of Human Genetics 72:72-81.
  18. SAS 9.1, Statistical Analysis System, System for Windows. Copyright (c) 2002-2003 by SAS Institute Inc., Cary, NC, USA.
  19. Shin, S. C. and E. R. Chung. 2007. Association of SNP marker in the leptin gene with carcass and meat quality traits in Korean cattle. Asian-Aust. J. Anim. Sci. 20(1):1-6.
  20. Shin, S. C. and E. R. Chung. 2007. SNP detection of carboxypeptidase E gene and its association with meat quality and carcass traits in Korean cattle. Asian-Aust. J. Anim. Sci. 20(1):328-333. https://doi.org/10.5713/ajas.2007.328
  21. van Himbergen, T. M., van L. J. H. Tits, M. Roest1 and A. F. H. Stalenhoef. 2006. The story of PON1: how an organophosphate-hydrolysing enzyme is becoming a player in cardiovascular medicine. The Netherlands Journal of Medicine 64(2):34-38.
  22. Wolff, M. S., S. Engel, G. Berkowitz, S. Teitelbaum, J. Siskind, D. B. Barr and J. Wetmur. 2007. Prenatal pesticide and PCB exposures and birth outcomes. Pediatr Res. 61(2):243-250. https://doi.org/10.1203/pdr.0b013e31802d77f0
  23. Ye, L. H., B.Y. Wu, D. F. Chen, F. Yang, H. Y. Hu, L. Chen and X. P. Xu. 2002. Association 0f CYP2E1 and PON2 311 Polymorphisms in Neonates with Preterm. Acta Genetica Sinica. 29(10): 847-853.

Cited by

  1. Dairy productivity of Holstein cattle with different genotypes of the paraoxonase-1 (PON1) gene vol.282, pp.None, 2008, https://doi.org/10.1051/e3sconf/202128202007