Analysis of Dual Phosphorylation of Hog1 MAP Kinase in Saccharomyces cerevisiae Using Quantitative Mass Spectrometry

  • Choi, Min-Yeon (Department of Biological Sciences, Seoul National University) ;
  • Kang, Gum-Yong (Department of Molecular Biotechnology, Konkuk University) ;
  • Hur, Jae-Young (Department of Biological Sciences, Seoul National University) ;
  • Jung, Jin Woo (Department of Molecular Biotechnology, Konkuk University) ;
  • Kim, Kwang Pyo (Department of Molecular Biotechnology, Konkuk University) ;
  • Park, Sang-Hyun (Department of Biological Sciences, Seoul National University)
  • Received : 2008.04.02
  • Accepted : 2008.04.14
  • Published : 2008.08.31

Abstract

The mitogen-activated protein kinase (MAPK) signaling pathway is activated in response to extracellular stimuli and regulates various activities in eukaryotic cells. Following exposure to stimuli, MAPK is known to be activated via dual phosphorylation at a conserved TxY motif in the activation loop; both threonine and tyrosine residues are phosphorylated by an upstream kinase. However, the mechanism underlying dual phosphorylation is not clearly understood. In the budding yeast Saccharomyces cerevisiae, the Hog1 MAPK mediates the high-osmolarity glycerol (HOG) signaling pathway. Tandem mass spectrometry and phosphospecific immunoblotting were performed to quantitatively monitor the dynamic changes occurring in the phosphorylation status of the TxY motif of Hog1 on exposure to osmotic stress. The results of our study suggest that the tyrosine residue is preferentially and dynamically phosphorylated following stimulation, and this in turn leads to the dual phosphorylation. The tyrosine residue was hyperphosphorylated in the absence of a threonine residue; this result suggests that the threonine residue is critical for the control of signaling noise and adaptation to osmotic stress.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Alessi, D.R., Saito, Y., Campbell, D.G., Cohen, P., Sithanandam, G., Rapp, U., Ashworth, A., Marshall, C.J., and Cowley, S. (1994). Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J. 13, 1610-1619.
  2. Andreev, V.P., Rejtar, T., Chen, H.S., Moskovets, E.V., Ivanov, A.R., and Karger, B.L. (2003). A universal denoising and peak picking algorithm for LC-MS based on matched filtration in the chromatographic time domain. Anal. Chem. 75, 6314-6326. https://doi.org/10.1021/ac0301806
  3. Asara, J.M., Christofk, H.R., Freimark, L.M., and Cantley, L.C. (2008). A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics 8, 994-999. https://doi.org/10.1002/pmic.200700426
  4. Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H., and Goldsmith, E.J. (1997). Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859-869. https://doi.org/10.1016/S0092-8674(00)80351-7
  5. Elion, E.A. (2000). Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3, 573-581. https://doi.org/10.1016/S1369-5274(00)00143-0
  6. Ferrell, J.E., Jr., and Bhatt, R.R. (1997). Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J. Biol. Chem. 272, 19008-19016. https://doi.org/10.1074/jbc.272.30.19008
  7. Gustin, M.C., Albertyn, J., Alexander, M., and Davenport, K. (1998). MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62, 1264-1300.
  8. Haystead, T.A., Dent, P., Wu, J., Haystead, C.M., and Sturgill, T.W. (1992). Ordered phosphorylation of p42mapk by MAP kinase kinase. FEBS Lett. 306, 17-22. https://doi.org/10.1016/0014-5793(92)80828-5
  9. Hohmann, S., Krantz, M., and Nordlander, B. (2007). Yeast osmoregulation. Methods Enzymol. 428, 29-45. https://doi.org/10.1016/S0076-6879(07)28002-4
  10. Hur, J.Y., Kang, G.Y., Choi, M.Y., Jung, J.W., Kim, K.P., and Park, S.H. (2008). Quantitative profiling of dual phosphorylation of Fus3 MAP Kinase in Saccharomyces cerevisiae. Mol. Cells 26, 41-48.
  11. Karin, M. (1998). Mitogen-activated protein kinase cascades as regulators of stress responses. Ann. N. Y. Acad. Sci. 851, 139-146. https://doi.org/10.1111/j.1749-6632.1998.tb08987.x
  12. Lee, E., Yim, S., Lee, S.K., and Park, H. (2002a). Two transactivation domains of hypoxia-inducible factor-1alpha regulated by the MEK-1/p42/p44 MAPK pathway. Mol. Cells 14, 9-15.
  13. Lee, J., Lee, B., Shin, D., Kwak, S.S., Bahk, J.D., Lim, C.O., and Yun, D.J. (2002b). Carnitine uptake by AGP2 in yeast Saccharomyces cerevisiae is dependent on Hog1 MAP kinase pathway. Mol. Cells 13, 407-412.
  14. Martin, H., Flandez, M., Nombela, C., and Molina, M. (2005). Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol. Microbiol. 58, 6-16. https://doi.org/10.1111/j.1365-2958.2005.04822.x
  15. Morrison, D.K., and Davis, R.J. (2003). Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell Dev. Biol. 19, 91-118. https://doi.org/10.1146/annurev.cellbio.19.111401.091942
  16. O'Rourke, S.M., Herskowitz, I., and O'Shea, E.K. (2002). Yeast go the whole HOG for the hyperosmotic response. Trends Genet. 18, 405-412. https://doi.org/10.1016/S0168-9525(02)02723-3
  17. Park, S.H., Zarrinpar, A., and Lim, W.A. (2003). Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299, 1061-1064. https://doi.org/10.1126/science.1076979
  18. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K., and Cobb, M.H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153-183. https://doi.org/10.1210/er.22.2.153
  19. Posas, F., and Saito, H. (1997). Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702-1705. https://doi.org/10.1126/science.276.5319.1702
  20. Ptashne, M. and Gann, A. (2003). Signal transduction. Imposing specificity on kinases. Science 299, 1025-1027. https://doi.org/10.1126/science.1081519
  21. Saito, H., and Tatebayashi, K. (2004). Regulation of the osmoregulatory HOG MAPK cascade in yeast. J. Biochem. 136, 267-272. https://doi.org/10.1093/jb/mvh135
  22. Shim, H., Shim, E., Lee, H., Hahn, J., Kang, D., Lee, Y.S., and Jeoung, D. (2006). CAGE, a novel cancer/testis antigen gene, promotes cell motility by activation ERK and p38 MAPK and downregulating ROS. Mol. Cells 21, 367-375.
  23. Steen, H., Jebanathirajah, J.A., Springer, M., and Kirschner, M.W. (2005). Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc. Natl. Acad. Sci. USA 102, 3948-3953.
  24. Tsay, Y.G., Wang, Y.H., Chiu, C.M., Shen, B.J., and Lee, S.C. (2000). A strategy for identification and quantitation of phosphopeptides by liquid chromatography/tandem mass spectrometry. Anal. Biochem. 287, 55-64. https://doi.org/10.1006/abio.2000.4837
  25. Warmka, J., Hanneman, J., Lee, J., Amin, D., and Ota, I. (2001). Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Mol. Cell. Biol. 21, 51-60. https://doi.org/10.1128/MCB.21.1.51-60.2001
  26. Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D.A., and White, F.M. (2007). Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl. Acad. Sci. USA 104, 5860-5865.
  27. Wurgler-Murphy, S.M., Maeda, T., Witten, E.A., and Saito, H. (1997). Regulation of the Saccharomyces cerevisiae HOG1 mitogen- activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol. Cell. Biol. 17, 1289-1297. https://doi.org/10.1128/MCB.17.3.1289
  28. Young, C., Mapes, J., Hanneman, J., Al-Zarban, S., and Ota, I. (2002). Role of Ptc2 type 2C Ser/Thr phosphatase in yeast highosmolarity glycerol pathway inactivation. Eukaryot. Cell 17, 1032- 1040.
  29. Zheng, C.F., and Guan, K.L. (1994). Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J. 13, 1123-1131.