Acknowledgement
Supported by : Korea Research Foundation
References
- Alessi, D.R., Saito, Y., Campbell, D.G., Cohen, P., Sithanandam, G., Rapp, U., Ashworth, A., Marshall, C.J., and Cowley, S. (1994). Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J. 13, 1610-1619.
- Andreev, V.P., Rejtar, T., Chen, H.S., Moskovets, E.V., Ivanov, A.R., and Karger, B.L. (2003). A universal denoising and peak picking algorithm for LC-MS based on matched filtration in the chromatographic time domain. Anal. Chem. 75, 6314-6326. https://doi.org/10.1021/ac0301806
- Asara, J.M., Christofk, H.R., Freimark, L.M., and Cantley, L.C. (2008). A label-free quantification method by MS/MS TIC compared to SILAC and spectral counting in a proteomics screen. Proteomics 8, 994-999. https://doi.org/10.1002/pmic.200700426
- Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H., and Goldsmith, E.J. (1997). Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859-869. https://doi.org/10.1016/S0092-8674(00)80351-7
- Elion, E.A. (2000). Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3, 573-581. https://doi.org/10.1016/S1369-5274(00)00143-0
- Ferrell, J.E., Jr., and Bhatt, R.R. (1997). Mechanistic studies of the dual phosphorylation of mitogen-activated protein kinase. J. Biol. Chem. 272, 19008-19016. https://doi.org/10.1074/jbc.272.30.19008
- Gustin, M.C., Albertyn, J., Alexander, M., and Davenport, K. (1998). MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62, 1264-1300.
- Haystead, T.A., Dent, P., Wu, J., Haystead, C.M., and Sturgill, T.W. (1992). Ordered phosphorylation of p42mapk by MAP kinase kinase. FEBS Lett. 306, 17-22. https://doi.org/10.1016/0014-5793(92)80828-5
- Hohmann, S., Krantz, M., and Nordlander, B. (2007). Yeast osmoregulation. Methods Enzymol. 428, 29-45. https://doi.org/10.1016/S0076-6879(07)28002-4
- Hur, J.Y., Kang, G.Y., Choi, M.Y., Jung, J.W., Kim, K.P., and Park, S.H. (2008). Quantitative profiling of dual phosphorylation of Fus3 MAP Kinase in Saccharomyces cerevisiae. Mol. Cells 26, 41-48.
- Karin, M. (1998). Mitogen-activated protein kinase cascades as regulators of stress responses. Ann. N. Y. Acad. Sci. 851, 139-146. https://doi.org/10.1111/j.1749-6632.1998.tb08987.x
- Lee, E., Yim, S., Lee, S.K., and Park, H. (2002a). Two transactivation domains of hypoxia-inducible factor-1alpha regulated by the MEK-1/p42/p44 MAPK pathway. Mol. Cells 14, 9-15.
- Lee, J., Lee, B., Shin, D., Kwak, S.S., Bahk, J.D., Lim, C.O., and Yun, D.J. (2002b). Carnitine uptake by AGP2 in yeast Saccharomyces cerevisiae is dependent on Hog1 MAP kinase pathway. Mol. Cells 13, 407-412.
- Martin, H., Flandez, M., Nombela, C., and Molina, M. (2005). Protein phosphatases in MAPK signalling: we keep learning from yeast. Mol. Microbiol. 58, 6-16. https://doi.org/10.1111/j.1365-2958.2005.04822.x
- Morrison, D.K., and Davis, R.J. (2003). Regulation of MAP kinase signaling modules by scaffold proteins in mammals. Annu. Rev. Cell Dev. Biol. 19, 91-118. https://doi.org/10.1146/annurev.cellbio.19.111401.091942
- O'Rourke, S.M., Herskowitz, I., and O'Shea, E.K. (2002). Yeast go the whole HOG for the hyperosmotic response. Trends Genet. 18, 405-412. https://doi.org/10.1016/S0168-9525(02)02723-3
- Park, S.H., Zarrinpar, A., and Lim, W.A. (2003). Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299, 1061-1064. https://doi.org/10.1126/science.1076979
- Pearson, G., Robinson, F., Beers Gibson, T., Xu, B.E., Karandikar, M., Berman, K., and Cobb, M.H. (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22, 153-183. https://doi.org/10.1210/er.22.2.153
- Posas, F., and Saito, H. (1997). Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702-1705. https://doi.org/10.1126/science.276.5319.1702
- Ptashne, M. and Gann, A. (2003). Signal transduction. Imposing specificity on kinases. Science 299, 1025-1027. https://doi.org/10.1126/science.1081519
- Saito, H., and Tatebayashi, K. (2004). Regulation of the osmoregulatory HOG MAPK cascade in yeast. J. Biochem. 136, 267-272. https://doi.org/10.1093/jb/mvh135
- Shim, H., Shim, E., Lee, H., Hahn, J., Kang, D., Lee, Y.S., and Jeoung, D. (2006). CAGE, a novel cancer/testis antigen gene, promotes cell motility by activation ERK and p38 MAPK and downregulating ROS. Mol. Cells 21, 367-375.
- Steen, H., Jebanathirajah, J.A., Springer, M., and Kirschner, M.W. (2005). Stable isotope-free relative and absolute quantitation of protein phosphorylation stoichiometry by MS. Proc. Natl. Acad. Sci. USA 102, 3948-3953.
- Tsay, Y.G., Wang, Y.H., Chiu, C.M., Shen, B.J., and Lee, S.C. (2000). A strategy for identification and quantitation of phosphopeptides by liquid chromatography/tandem mass spectrometry. Anal. Biochem. 287, 55-64. https://doi.org/10.1006/abio.2000.4837
- Warmka, J., Hanneman, J., Lee, J., Amin, D., and Ota, I. (2001). Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Mol. Cell. Biol. 21, 51-60. https://doi.org/10.1128/MCB.21.1.51-60.2001
- Wolf-Yadlin, A., Hautaniemi, S., Lauffenburger, D.A., and White, F.M. (2007). Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks. Proc. Natl. Acad. Sci. USA 104, 5860-5865.
- Wurgler-Murphy, S.M., Maeda, T., Witten, E.A., and Saito, H. (1997). Regulation of the Saccharomyces cerevisiae HOG1 mitogen- activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol. Cell. Biol. 17, 1289-1297. https://doi.org/10.1128/MCB.17.3.1289
- Young, C., Mapes, J., Hanneman, J., Al-Zarban, S., and Ota, I. (2002). Role of Ptc2 type 2C Ser/Thr phosphatase in yeast highosmolarity glycerol pathway inactivation. Eukaryot. Cell 17, 1032- 1040.
- Zheng, C.F., and Guan, K.L. (1994). Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J. 13, 1123-1131.