실험계획법을 활용한 은 나노 입자의 합성 및 최적화

Optimization of Silver Nanoparticles Synthesis through Design-of-Experiment Method

  • 임재홍 (포항공과대학교 화학공학과) ;
  • 강경연 (포항공과대학교 화학공학과) ;
  • 임바드로 (포항공과대학교 화학공학과) ;
  • 이재성 (포항공과대학교 화학공학과)
  • Lim, Jae Hong (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Kang, Kyung Yeon (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Im, Badro (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Lee, Jae Sung (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH))
  • 투고 : 2008.05.02
  • 심사 : 2008.05.20
  • 발행 : 2008.08.31

초록

본 연구에서는 잉크젯용 전도성 금속 나노 잉크 개발을 목표로 통계적인 실험과 분석을 진행하여 재현성 있는 고품질의 은 나노 입자를 합성할 수 있는 기술을 개발하고자 하였다. 은 나노 입자는 상용 수계분산제 Daxad19를 이용한 용액 환원침전법을 통해 0.3 M의 고농도로 합성되었다. 합성에 주요한 영향을 주는 6개의 인자를 선정한 후 실험 계획법(Design-of-experiment)을 통해 실험을 수행하였다. 합성된 은 입자는 SEM, TEM, UV-Visible 등의 분석법을 이용하여 입자크기 및 분포와 분산도 등을 측정하였으며 통계 프로그램인 Minitab으로 이를 최적화하였다. 통계적인 실험계획 및 분석은 2차 부분요인분석법(2k-fractional factorial design)과 반응표면분석법인 박스-벤켄법(Box-Behnken design)으로 진행하였다. 이를 통한 합성 최적화로 평균입경 $30nm{\pm}10%$를 가진 구형의 은 나노 입자를 합성하였다. 또한 본 연구에서는 실험 결과 해석을 통해 환원침전법에서의 입자크기 및 형상 제어의 방식도 실험적으로 밝혀냈다.

The aim of this work was to obtain uniform and well-dispersed spherical silver nanoparticles using statistical design-of-experiment methods. We performed the experiments using 2 k fractional factorial designs with respect to key factors of a general chemical reduction method. The nanoparticles prepared were characterized by SEM, TEM and UV-visible absorbance for particle size, distribution, aggregation and anisotropy. The data obtained were analyzed and optimized using a statistical software, Minitab. The design-of-experiment methods using quantified data enabled us to determine key factors and appreciate interactions between factors. The measured properties of nanoparticles were dominated not only by individual one or two main factors but also by interactions between factors. The appropriate combination of the factors produced small, narrow-distributed and non-aggregated silver nanoparticles of about 30 nm with approximately 10% standard deviation.

키워드

과제정보

연구 과제 주관 기관 : 과학기술부, 교육인적자원부

참고문헌

  1. Ryu, B. H., Choi, Y., Park, H. S., Byun, J. H., Kong, K., Lee, J. O. and Chang, H., "Synthesis of Highly Concentrated Silver Nanosol and Its Application to Inkjet Printing," Colloids and Surfaces A: Physicochem. Eng. Aspects, 270-271, 345-351(2005) https://doi.org/10.1016/j.colsurfa.2005.09.005
  2. Sondi, I., Goia, D. V. and Matijevic , E., "Preparation of Highly Concentrated Stable Dispersions of Uniform Silver Nanoparticles," J. Colloid Interface Sci., 260, 75-81(2003) https://doi.org/10.1016/S0021-9797(02)00205-9
  3. Suber, L., Sondi, I., Goia, D. V. and Matijevic, E., "Preparation and the Mechanisms of Formation of Silver Particles of Different Morphologies in Homogeneous Solutions," J. Colloid Interface Sci,. 288, 489-495(2005) https://doi.org/10.1016/j.jcis.2005.03.017
  4. Box, G. E. P., Hunter, W. G. and Hunter, J. S., Statistics for Experimenters-An Introduction to Design, Data Analysis, and Model Building, Wiley, New York(1978)
  5. Passos, C. G., Ribaski, F. S., Simon, N. M., dos Santos Jr., A. A., Vaghetti, J. C. P., Benvenutti, E. V. and Lima, E. C., "Use of Statistical Design of Experiments to Evaluate the Sorption Capacity of 7-amine-4-azaheptylsilica and 10-amine-4-azadecylsilica for Cu(II), Pb(II), and Fe(III) Adsorption," J. Colloid Interface Sci,. 302, 396-407(2006) https://doi.org/10.1016/j.jcis.2006.06.052
  6. Rueda, N., Bacaud, R., Lanteri, P. and Vrinat, M., "Factorial Design for the Evaluation of the Influence of Preparation Parameters Upon the Properties of Dispersed Molybdenum Sulfide Catalysts," Applied Catalysis A: General, 215, 81-89(2001) https://doi.org/10.1016/S0926-860X(01)00509-9
  7. Silina, Y. E., Kuchmenko, T. A., Korenman, Y. I., Tsivileva, O. M. and Nikitina, V. E., "Use of a Complete Factorial Experiment for Designing a Gas Sensor Based on Extracts of Pleurotus ostreatus Mycelium Mushroom," J. Analyt. Chem., 60(7), 678-683(2005) https://doi.org/10.1007/s10809-005-0158-y
  8. Brasil, J. L., Martins, L. C., Ev, R. R., Dupont, J., Dias, S. L. P., Sales, J. A. A., Airoldi, C. and Lima, E. C., "Factorial Design for Optimization of Flow-injection Preconcentration of Copper (II) Determination in Natural Waters, Using 2-aminomethylpyridine Grafted Silica Gel as Adsorbent and Spectrophotometric Detection," Int. J. Environ. Anal. Chem., 85, 475-491(2005) https://doi.org/10.1080/03067310500117350
  9. Cao G., Nanostrures & Nanomaterials-Synthesis, Properties & Applications, Imperial College Press, London(2004)
  10. Mulvaney, P., "Surface-Plasmon Spectroscopy of Nanosized Metal Particles," Langmuir, 12, 788-800(1996) https://doi.org/10.1021/la9502711
  11. Sondi, I., Goia, D. V. and Matijevic, E., "Preparation of Highly Concentrated Stable Dispersions of Uniform Silver Nanoparticles," J. Colloid Interface Sci., 260, 75-81(2003) https://doi.org/10.1016/S0021-9797(02)00205-9
  12. Gutierrez, M. and Henglein, A., "Formation of Colloidal Silver by "push-pull" Reduction of Silver(1+), J. Phys. Chem., 97, 11368-11370(1993) https://doi.org/10.1021/j100146a003
  13. Passos, C. G., Ribaski, F. S., Simon, N. M., dos Santos Jr., A. A., Vaghetti, J. C. P., Benvenutti, E. V. and Lima, E. C., "Use of Statistical Design of Experiments to Evaluate the Sorption Capacity of 7-amine-4-azaheptylsilica and 10-amine- 4-azadecylsilica for Cu(II), Pb(II), and Fe(III) Adsorption," J. Colloid Interface Sci., 302, 396-407(2006) https://doi.org/10.1016/j.jcis.2006.06.052