DOI QR코드

DOI QR Code

LebZIP2 induced by salt and drought stress and transient overexpression by Agrobacterium

  • Seong, Eun-Soo (Bioherb Research Institute, College of Agriculture and Life Science, Kangwon National University) ;
  • Kwon, Soon -ung (Bioherb Research Institute, College of Agriculture and Life Science, Kangwon National University) ;
  • Ghimire, Bimal Kumar (Bioherb Research Institute, College of Agriculture and Life Science, Kangwon National University) ;
  • Yu, Chang-Yeon (Bioherb Research Institute, College of Agriculture and Life Science, Kangwon National University) ;
  • Cho, Dong-Ha (School of Bioscience and Biotechnology, College of Agriculture and Life Science, Kangwon National University) ;
  • Lim, Jung-Dae (Department of Herbal Medicine Resource, Kangwon National University) ;
  • Kim, Kyoung-Su (Department of Plant Pathology and Microbiology, Texas A&M University) ;
  • Heo, Kweon (Division of Bio-resources Technology, College of Agriculture and Life Science, Kangwon National University) ;
  • Lim, Eun-Sang (Kyung Nong Corporation, Kunkuk University) ;
  • Chung, Ill-Min (Department of Applied Life Science, Kunkuk University) ;
  • Kim, Myong-Jo (Bioherb Research Institute, College of Agriculture and Life Science, Kangwon National University) ;
  • Lee, Youn-Su (Division of Bio-resources Technology, College of Agriculture and Life Science, Kangwon National University)
  • Published : 2008.10.31

Abstract

The full-length cDNA of LebZIP2 (Lycopersicon esculentum bZIP2) encodes a protein of 164 amino acids and contains a N-terminal basic-region leucine zipper domain. Analysis of the deduced tomato LebZIP2 amino acid sequence revealed that it shares 85% sequence identity with both tobacco bZIP and pepper CcbZIP. LebZIP2 mRNA is expressed at a high level exclusively in flowers. Presently, LebZIP2 was strongly increased also following NaCl and mannitol treatments. No significant LebZIP2 expression was evident following cold treatment. Transient LebZIP2 overexpression resulted in increased NbNOA1 and NbNR transcript levels in Nicotiana benthamiana leaves. Our results indicate that LebZIP2 might play roles as an abiotic stress-signaling pathway and as a transcriptional regulator of the NbNOA1 or NbNR genes.

Keywords

References

  1. Landschulz, W. H., Johnson, P. F. and McKnight, S. L. (1988) The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240, 1759-1764 https://doi.org/10.1126/science.3289117
  2. Baxevanis, A. D. and Vinson, C. R. (1993) Interactions of coiled coils in transcription factors: where is the specificity? Curr. Opin. Genet. Dev. 3, 278-285 https://doi.org/10.1016/0959-437X(93)90035-N
  3. Riechmann, J. L., Heard, J. and Martin, G. (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105-2110 https://doi.org/10.1126/science.290.5499.2105
  4. Hurst, H. C. (1995) Transcription factors. 1. bZIP proteins. Protein Profile 2, 105-168
  5. Oyama, T., Shimura, Y. and Okada, K. (1997) The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus- induced development of root and hypocotyl. Genes Dev. 11, 2983-2995 https://doi.org/10.1101/gad.11.22.2983
  6. Jakoby, M., Weisshaar, B., Droge-Laser, W., Tiedemann, J., Kroij, T. and Parcy, F. (2002) The family of bZIP transcription factors in Arabidopsis thaliana. Trends Plant Sci. 7, 106-111 https://doi.org/10.1016/S1360-1385(01)02223-3
  7. Despres, C., Chubak, C., Rochon, A., Clark, R., Bethune, T., Desveaux, D. and Fobert., P. (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15, 2181-2191 https://doi.org/10.1105/tpc.012849
  8. Finkelstein, R. and Lynch, T. (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599-609 https://doi.org/10.1105/tpc.12.4.599
  9. Heinekamp, T., Kuhlmann, M., Lenk, A., Strathmann, A. and Droge-Laser, W. (2002) The tobacco bZIP transcription factor BZI-1 binds to G-box elements in the promoters of phenylpropanoid pathway genes in vitro, but it is not involved in their regulation in vivo. Mol. Genet. Genomics 267, 16-26 https://doi.org/10.1007/s00438-001-0636-3
  10. Strathmann, M., Kuhlmann, M., Heinekamp, T. and Droge-Laser, W. (2001) BZI-1 specifically heterodimerises with the tobacco bZIP transcription factors BZI-2, BZI-3/TBZF and BZI-4, and is functionally involved in flower development. Plant J. 28, 397-408 https://doi.org/10.1046/j.1365-313X.2001.01164.x
  11. Modolo, L. V., Cunha, F. Q., Braga, M. R. and Salgado, I. (2002) Nitric oxide synthase-mediated phytoalexin accumulation in soybean cotyledons in response to the Diaporthe phaseolorum f. sp. meridionalis elicitor. Plant Physiol. 130, 1288-1297 https://doi.org/10.1104/pp.005850
  12. Crawford, N. M., Galli, M., Tischner, R., Heimer, Y. M., Okamoto, M. and Mack, A. (2006) Plant nitric oxide synthase: back to square one. Trends in Plant Sci. 11, 526-527 https://doi.org/10.1016/j.tplants.2006.09.007
  13. Stankovic, B., Vian, A., Henry-Vian, C. and Davies, E. (2000) Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA-binding protein. Planta 212, 60-66 https://doi.org/10.1007/s004250000362
  14. Kusano, T., Sugawara, K., Harada, M. and Berberich, T. (1998) Molecular cloning and partial characterization of a tobacco cDNA encoding a small bZIP protein. Biochim. Biophys. Acta. 1395, 171-175 https://doi.org/10.1016/S0167-4781(97)00161-9
  15. Martinez-Garcia, J. F., Moyano, E., Alcocer, M. J. and Martin, C. (1998) Two bZIP proteins from Antirrhinum flowers preferentially bind a hybrid C-box/G-box motif and help to define a new subfamily of bZIP transcription factors. Plant J. 13, 489-505 https://doi.org/10.1046/j.1365-313X.1998.00050.x
  16. Zou, M., Guan, Y., Ren, H., Zhang, F. and Chen, F. (2008) A bZIP transcription factor, OsABI5, is involved in rice fertility and stress tolerance. Plant Mol. Biol. 66, 675-683 https://doi.org/10.1007/s11103-008-9298-4
  17. Singh K., Dennis, E. S., Ellis, J. G., Llewellyn, D. J. Tokuhisa., J. G., Wahleithner, J. A. and Peacock, W. J. (1990) OCSBF-1, a maize ocs enhancer binding factor: isolation and expression during development. Plant Cell 2, 891-903 https://doi.org/10.1105/tpc.2.9.891
  18. Rook, F., Weisbeek, P. and Smeekens, S. (1998) The lightregulated Arabidopsis bZIP transcription factor gene ATB2 encodes a protein with an unusually long leucine zipper domain. Plant. Mol. Biol. 37, 171-178 https://doi.org/10.1023/A:1005964327725
  19. Aguan, K., Sugawara, K., Suzuki, N. and Kusano, T. (1993) Low temperature-dependent expression of a rice gene encoding a protein with a leucine-zipper motif. Mol. Gen. Genet. 240, 1-8
  20. Sreenivasulu, N., Sopory, S. K. and Kavi Kishor, P. B. (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388, 1-13 https://doi.org/10.1016/j.gene.2006.10.009
  21. Finkelstein, R. R., Gampala, S. S. and Rock, C. D. (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14, S15-S45 https://doi.org/10.1105/tpc.010441
  22. Lee, S. C., Choi, H. W., Hwang, I. S., Choi, D. S. and Hwang, B. K. (2006) Functional roles of the pepper pathogen- induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta 224, 1209-1225 https://doi.org/10.1007/s00425-006-0302-4
  23. Ukness, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S., Chandler, D., Slusarenko, A., Ward, E. and Ryals, J. (1992) Acquired resistance in Arabidopsis. Plant Cell 4, 645-656 https://doi.org/10.1105/tpc.4.6.645
  24. Rickauer, M., Brodschelm, W., Bottin, A., Veronesi, C., Grimal, H. and Esquerre-Tugaye, M. T. (1997) The jasmonate pathway is involved differentially in the regulation of diVerent defense responses in tobacco cells. Planta 202, 155-162 https://doi.org/10.1007/s004250050114
  25. Asada, K. (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  26. Karpinski, S., Wingsle, G., Karpinska, B., Hallogren, J. E. (2001) Redox sensing of photooxidative stress and acclamatory mechanisms in plants; In Regulation of Photosynthesis, Aro, E. M. and Andersson, B. (eds.), pp 469-486, Kluwer, Dordrecht
  27. Murgia, I., Tarantino, D., Vannini, C., Bracale, M., Carravieri, S. and Soave, C. (2004) Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxideinduced cell death. Plant J. 38, 940-953 https://doi.org/10.1111/j.1365-313X.2004.02092.x
  28. Kranner, I., Beckett, R. P., Wornik, S., Zorn, M. and Pfeifhofer, H. W. (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J. 31, 13-24 https://doi.org/10.1046/j.1365-313X.2002.01329.x
  29. Claudia, N., Busk, P. K., Domínguez-Puigjaner, E., Lumbreras, V., Testillano, P. S., Risuen, M. C. and Pagès, M. (2005) Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28. Plant Mol. Biol. 58, 899-914 https://doi.org/10.1007/s11103-005-8407-x
  30. Pla, M., Vilardell, J., Guiltinan, M. J., Marcotte, W. R., Niogret, M. F., Quatrano, R. S. and Pagès, M. (1993) The cis-regulatory element CCACGTGG is involved in ABA and waterstress responses of the maize gene rab28. Plant Mol. Biol. 21, 259-266 https://doi.org/10.1007/BF00019942
  31. Busk, P. K., Pujal, J., Jessop, A., Lumbreras, V. and Pagès, M. (1999) Constitutive protein-DNA interactions on the abscisic acid-responsive element before and after developmental activation of the rab28 gene. Plant Mol. Biol. 41, 529-536 https://doi.org/10.1023/A:1006345113637
  32. Nakagawa, H., Ohmiya, K. and Hattori, T. (1996) A rice bZIP protein, designated OSBZ8, is rapidly induced by abscisic acid. A bZIP factor, TRAB1, interacts with VP1 and mediates abscisic acid-induced transcription. Plant J. 9, 217-227 https://doi.org/10.1046/j.1365-313X.1996.09020217.x
  33. Choi, H., Hong, J., Ha, J., Kang, J. and Kim, S. Y. (2000) ABFs, a family of ABA responsive element binding factors. J. Biol. Chem. 275, 1723-1730 https://doi.org/10.1074/jbc.275.3.1723
  34. Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. U.S.A. 97, 11632-11637 https://doi.org/10.1073/pnas.190309197
  35. Lopez-Molina, L. Mongrand, S. and Chua, N. H. (2001) A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 98, 4782-4787 https://doi.org/10.1073/pnas.081594298
  36. Yamamoto-Katou, A., Katou, S., Yoshioka, H., Doke, N. and Kawakita, K. (2006) Nitrate reductase is responsible for elicitin-induced nitric oxide production in Nicotiana benthamiana. Plant Cell Physiol. 47, 726-735 https://doi.org/10.1093/pcp/pcj044
  37. Grun, S., Lindermayr, C., Sell, S. and Durner, J. (2006) Nitric oxide and gene regulation in plants. J. Exp. Botany 57, 507-516 https://doi.org/10.1093/jxb/erj053
  38. van Loon, L. C., Rep, M. and Pieterse, C. M. J. (2006) Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135-162 https://doi.org/10.1146/annurev.phyto.44.070505.143425
  39. Kato, H., Asai, S., Yamamoto-Katou, A., Yoshioka, H., Doke, N. and Kawakita, K. (2008) Involvement of NbNOA1 in NO production and defense responses in INF1-treated Nicotiana benthamiana. J. Gen. Plant Pathol. 74, 15-23 https://doi.org/10.1007/s10327-007-0054-4
  40. Yamamoto, A., Katou, S., Yoshioka, H., Doke, N. and Kawakita, K. (2004) Involvement of nitric oxide generation in hypersensitive cell death induced by elicitin in tobacco cell suspension culture. J. Gen. Plant Pathol. 70, 85-92 https://doi.org/10.1007/s10327-003-0094-3
  41. Chattopadhyay, S., Ang, L. H., Puente, P., Deng, X. W. and Wei, N. (1998). Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10, 673-683 https://doi.org/10.1105/tpc.10.5.673
  42. Jonassen, E. M., Lea, U. S. and Lillo, C. (2008) HY5 and HYH are positive regulators of nitrate reductase in seedlings and rosette stage plants. Planta 227, 559-564 https://doi.org/10.1007/s00425-007-0638-4
  43. Yi, S. Y., Kim, J. H., Joung, Y. H., Lee, S., Kim, W. T., Yu, S. H. and Choi, D. (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol. 136, 2862-2874 https://doi.org/10.1104/pp.104.042903
  44. Sambrook, J, Fritsch, E. F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, Ed 2. Cold Spring Harbor Laboratory Press, Plainview, NY
  45. Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. and Mullineaux, P. M. (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819-832 https://doi.org/10.1023/A:1006496308160

Cited by

  1. Molecular characterization and stress signaling of the Miscanthus sinensis MsCOMT gene by transient assay vol.59, pp.5, 2012, https://doi.org/10.1134/S1021443712050135
  2. The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis vol.67, pp.11, 2016, https://doi.org/10.1093/jxb/erw181
  3. Genome-wide systematic characterization of the bZIP transcriptional factor family in tomato (Solanum lycopersicum L.) vol.16, pp.1, 2015, https://doi.org/10.1186/s12864-015-1990-6
  4. Overexpression of the MhTGA2 gene from crab apple (Malus hupehensis) confers increased tolerance to salt stress in transgenic apple (Malus domestica) vol.152, pp.04, 2014, https://doi.org/10.1017/S0021859613000130
  5. Candidate gene expression profiling in two contrasting tomato cultivars under chilling stress vol.58, pp.2, 2014, https://doi.org/10.1007/s10535-014-0403-z
  6. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene vol.14, pp.4, 2016, https://doi.org/10.1111/pbi.12480
  7. An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes vol.28, pp.10, 2009, https://doi.org/10.1007/s00299-009-0749-4
  8. Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress vol.11, pp.7, 2016, https://doi.org/10.1371/journal.pone.0159721
  9. Morphological changes and increase of resistance to oxidative stress by overexpression of the LebZIP2 gene in Nicotiana benthamiana vol.63, pp.1, 2016, https://doi.org/10.1134/S1021443716010143
  10. Molecular characterization of a stress-response bZIP transcription factor in banana vol.113, pp.2, 2013, https://doi.org/10.1007/s11240-012-0258-y
  11. Genome-Wide Identification and Structural Analysis of bZIP Transcription Factor Genes in Brassica napus vol.8, pp.10, 2017, https://doi.org/10.3390/genes8100288
  12. SlbZIP38, a Tomato bZIP Family Gene Downregulated by Abscisic Acid, Is a Negative Regulator of Drought and Salt Stress Tolerance vol.8, pp.12, 2017, https://doi.org/10.3390/genes8120402
  13. Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato vol.18, pp.1, 2018, https://doi.org/10.1186/s12870-018-1299-0