연속회분식 공정에서 COD부하에 따른 질산화/탈질율 및 유출질소 분휴

Nitrification/Denitrification Rate and Classification of Output Nitrogen according to COD Loads in SBR

  • Lee, Jaekune (Daejeon Development Institute) ;
  • Yim, Soobin (Department of Environmental Engineering, Kyungsung University)
  • 투고 : 2007.09.10
  • 심사 : 2007.12.12
  • 발행 : 2008.01.30

초록

In this study, we investigated the nitrification/denitrification rate and classification of output nitrogen of a sequencing batch reactor (SBR) system with the variation of COD loads ; COD loads of 0.3, 0.4, 0.6, 0.7, 0.8, 1.0 and $1.2kgCOD/m^3{\cdot}d$ were tested to determine the optimum conditions for the operation of the SBR and increase its nitrogen removal efficiency. As the COD loads increased, the nitrification rate at aerobic(I) period and the denitrification rate at anoxic(I) period were decreased. With the variation of COD loads, the amounts of nitrogen removed in the clarified water effluent were 63.9, 54.2, 34.7, 22.5, 13.7, 12.5 and 26.5 mg/cycle, respectively. The amounts of nitrogen removed during the sludge waste process were 19.5, 26.6, 41.0, 47.3, 58.1, 72.4 and 88.1 mg/cycle, respectively. The amounts of nitrogen removed by denitrification were 66.8, 69.3, 68.9, 56.5, 39.5, 7.3 and 0.0 mg/cycle, respectively, indicating that COD load more than $0.7kgCOD/m^3{\cdot}d$ decreases the amounts of denitrified nitrogen. The nitrogen mass balances were calculated as the percentages of nitrogen removed in the clarified water effluent or by denitrification and sludge waste processing in each cycle of SBR operation and were 99.0, 98.5, 95.4, 82.1, 73.0, 60.5 and 74.8% for COD loads of 0.3, 0.4, 0.6, 0.7, 0.8, 1.0 and $1.2kgCOD/m^3{\cdot}d$, respectively.

키워드

참고문헌

  1. 정진영(1999). 연속회분식 반응기를 이용한 고농도 암모니 아성 질소 함유폐수의 처리. 공학박사학위논문, 한국과 학기술원
  2. APHA (1998). Standard Methods for Examination of Water and Wastewater, 20th ed., Washington, DC
  3. Barker, P. S. and Dold, P. L. (1995). COD and nitrogen mass balance in activated sludge systems. Water Res., 29, pp. 633-643 https://doi.org/10.1016/0043-1354(94)00155-Z
  4. Grace, L. W. L. and Tam, N. F. Y. (1994). Operating strategy of a sequencing batch reactor for simultaneous removal of wastewater organic matter and nutrients. Resour. Conser. Recy., 11, pp. 209-223 https://doi.org/10.1016/0921-3449(94)90091-4
  5. Irvine, R. L., Ketchum, L. H., Breyfogle, R. and Barth, E. F. (1983). Municipal application of sequencing batch treatment at Culver, Indiana. JWPCF, 55, pp. 484-488
  6. Jetten, M. S. M., Strous, M., Pas-Schoonen, K. T., Schalk, J., Dongen, U. J. G. M., Graaf, A. A., Logemann, S., Muyzer, G., Loosdrecht, M. C. M. and Kuenen, J. G. (1999). The anaerobic oxidation of ammonium. FEMS Microbiol. Rev., 22, pp. 421-437 https://doi.org/10.1111/j.1574-6976.1998.tb00379.x
  7. Joo, H. S., Hirai, M. and Shoda, M. (2006). Piggery wastewater treatment using Alcaligenes faecalis strain No. 4 with heterotrophic nitrification and aerobic denitrification. Water Res., 40, pp. 3029-3036 https://doi.org/10.1016/j.watres.2006.06.021
  8. Kim, J. K., Park, K. J., Cho, K. S., Nam, S. W., Park, T. J. and Bajpai, R. (2005). Aerobic nitrification-denitrification by heterotrophic Bacillus strains. Bioresource Technology, 96, pp. 1897-1906 https://doi.org/10.1016/j.biortech.2005.01.040
  9. Lee, J. K., Lee, K. H. and Yim, S. B. (2007). Optimization of nitrogen removal in a sequencing batch reactor system by variation of the time distribution. J. Environ. Sci. Heal., 42A(10), pp. 1655-1663
  10. Obaja, D., Mace, S., Costa, J., Sans, C. and Mara-Alvarez, J. (2003). Nitrification, denitrification and biological phosphorus removal in piggery wastewater using a sequencing batch reactor. Bioresource Technology, 87, pp. 103-111 https://doi.org/10.1016/S0960-8524(02)00229-8
  11. Palis, J. C. and Irvine, R. L. (1985). Nitrogen removal in a low-loaded single tank sequencing batch reactor. JWPCF, 57, pp. 82-86
  12. Plosz, B. G., Jobbagy, A. and Grady, C. P. L. (2003). Factors influencing deterioration of denitrification by oxygen entering anoxic reactor through the surface. Water Res., 37, pp. 853-863 https://doi.org/10.1016/S0043-1354(02)00445-1
  13. Ra, C. S., Lo, K. V., Shin, J. S., Oh, J. S. and Hong, H. J. (2000). Biological nutrient removal with an internal organic carbon source in piggery wastewater treatment. Water Res., 34, pp. 965-973 https://doi.org/10.1016/S0043-1354(99)00189-X
  14. Schmidt, I., Sliekers, O., Schmid, M., Bock, E., Fuerst, J., Kuenen, J. G., Jetten, M. S. M. and Strous, M. (2002). Aerobic and anaerobic ammonium oxidizing bacteria-competitors or natural partners?. FEMS Microbiol. Ecol., 39, pp. 175-181
  15. Schmidt, I., Sliekers, O., Schmid, M., Cirpus, I., Strous, M., Bock, E., Kuenen, J. G. and Jetten, M. S. M. (2003). New concepts of microbial treatment process oft the nitrogen removal in wastewater. FEMS Microbiol. Reviews., 27, pp. 481-492 https://doi.org/10.1016/S0168-6445(03)00039-1
  16. Shin, S. W., Ji, D. H., Lee, J. K. and Lee, K. H. (2007). Comparison of nitrogen removal characteristics and nitrification /denitrification rate in SBR using real and synthetic wastewater. KSWST, 15(2), pp. 47-55
  17. Siebritz, I. P., Ekama, G. A. and Marais, G. v. R. (1983). A parametric model for biological excess phosphorus removal. Wat. Sci. Tech., 15, pp. 127-152
  18. Sin, G., Insel, G., Lee, D. S. and Vanrolleghem, P. A. (2004). Optimal but robust N and P removal in SBRs: A model based sysmatic study of operation. Water Sci. Technol., 50, pp. 97-105 https://doi.org/10.2166/wst.2004.0676
  19. Sliekers, A. O., Derwort, N., Campos Gomez, J. L., Strous, M., Kuenen, J. G. and Jetten, M. S. M. (2002). Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res., 36, pp. 2475-2482 https://doi.org/10.1016/S0043-1354(01)00476-6
  20. Verstraete, W. and Philips, S. (1998). Nitrification-denitrification process and technologies in new contexts. Environ. Pollut., 102, pp. 717-726 https://doi.org/10.1016/S0269-7491(98)80104-8