Induction of Apoptosis in Arsenic Trioxide-treated Lung Cancer A549 Cells by Buthionine Sulfoximine

  • Han, Yong Hwan (Department of Physiology, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Chonbuk National University) ;
  • Kim, Sung Zoo (Department of Physiology, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Chonbuk National University) ;
  • Kim, Suhn Hee (Department of Physiology, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Chonbuk National University) ;
  • Park, Woo Hyun (Department of Physiology, Medical School, Institute for Medical Sciences, Center for Healthcare Technology Development, Chonbuk National University)
  • Received : 2007.12.20
  • Accepted : 2008.03.17
  • Published : 2008.08.31

Abstract

Arsenic trioxide (ATO) affects many biological processes such as cell proliferation, apoptosis, differentiation and angiogenesis. L-buthionine sulfoximine (BSO) is an inhibitor of GSH synthesis. We tested whether ATO reduced the viability of lung cancer A549 cells in vitro, and investigated the in vitro effect of the combination of ATO and BSO on cell viability in relation to apoptosis and the cell cycle. ATO caused a dose-dependant decrease of viability of A549 cells with an $IC_{50}$ of more than $50{\mu}m$. Low doses of ATO or BSO ($1{\sim}10{\mu}m$) alone did not induce cell death. However, combined treatment depleted GSH content and induced apoptosis, loss of mitochondrial transmembrane potential (${\Delta}{\Psi}_m$) and cell cycle arrest in G2. Reactive oxygen species (ROS) increased or decreased depending on the concentration of ATO. In addition, BSO generally increased ROS in ATO-treated A549 cells. ROS levels were at least in part related to apoptosis in cells treated with ATO and/or BSO. In conclusion, we have demonstrated that A549 lung cells are very resistant to ATO, and that BSO synergizes with clinically achievable concentration of ATO. Our results suggest that combination treatment with ATO and BSO may be useful for treating lung cancer.

Keywords

Acknowledgement

Supported by : Korean Science and Engineering Foundation

References

  1. Baj, G., Arnulfo, A., Deaglio, S., Mallone, R., Vigone, A., De Cesaris, M.G., Surico, N., Malavasi, F., and Ferrero, E. (2002). Arsenic trioxide and breast cancer: analysis of the apoptotic, differentiative and immunomodulatory effects. Breast Cancer Res. Treat. 73, 61-73. https://doi.org/10.1023/A:1015272401822
  2. Baran, C.P., Zeigler, M.M., Tridandapani, S., and Marsh, C.B. (2004). The role of ROS and RNS in regulating life and death of blood monocytes. Curr. Pharm. Des. 10, 855-866. https://doi.org/10.2174/1381612043452866
  3. Bubici, C., Papa, S., Pham, C.G., Zazzeroni, F., and Franzeso, G. (2006). The NF-kappaB-mediated control of ROS and JNK signaling. Histol. Histopathol. 21, 69-80.
  4. Chou, W.C., Jie, C., Kenedy, AA, Jones, R.J., Trush, M.A., and Dang, C.V. (2004). Role of NADPH oxidase in arsenic-induced reactive oxygen species formation and cytotoxicity in myeloid leukemia cells. Proc. Natl. Acad. Sci. USA 101, 4578-4583.
  5. Dai, J., Weinberg, R.S., Waxman, S., and Jing, Y. (1999). Malignant cells can be sensitized to undergo growth inhibition and apoptosis by arsenic trioxide through modulation of the glutathione redox system. Blood 93, 268-277.
  6. Gonzalez, C., Sanz-Alfayate, G., Agapito, M.T., Gomez-Nino, A., Rocher, A, and Obeso, A (2002). Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia. Respir. Physiol. Neurobiol. 132, 17-41. https://doi.org/10.1016/S1569-9048(02)00047-2
  7. Haga, N., Fujita, N., and Tsuruo, T (2005). Involvement of mitochondrial aggregation in arsenic trioxide (As203)-induced apoptosis in human glioblastoma cells. Cancer Sci. 96, 825-833. https://doi.org/10.1111/j.1349-7006.2005.00114.x
  8. Han, S.S., Kim, K., Hahm, E.R., Park, C.H., Kimler, B.F., Lee, S.J., Lee, S.H., Kim, W.S., Jung, C.W., Park, K., et al. (2005). Arsenic trioxide represses constitutive activation of NF-kappaB and COX-2 expression in human acute myeloid leukemia, HL-60. J. Cell. Biochem. 94, 695-707. https://doi.org/10.1002/jcb.20337
  9. Han, Y.H., Kim, S.Z., Kim, S.H., and Park, W.H. (2007). Arsenic trioxide inhibits growth of As4.1 juxtaglomerular cells via cell cycle arrest and caspase-independent apoptosis. Am J. Physiol. Renal. Physiol. 293, F511-520 https://doi.org/10.1002/jcb.20337
  10. Han, Y.H., Kim, S.H., Kim, S.z., and Park, W.H. (2008). Intracellular GSH levels rather than ROS levels are tightly related to AMA-induced HeLa cell death. Chem. Biol. Interact. 171, 67-78. https://doi.org/10.1016/j.cbi.2007.08.011
  11. Hyun Park, W., Hee Cho, Y., Won Jung, C., Oh Park, J., Kim, K., Hyuck lm, Y., Lee, M.H., Ki Kang, W., and Park, K. (2003). Arsenic trioxide inhibits the growth of A498 renal cell carcinoma cells via cell cycle arrest or apoptosis. Biochem. Biophys. Res. Commun. 300, 230-235. https://doi.org/10.1016/S0006-291X(02)02831-0
  12. Jin, H.O., Yoon, S.I., Seo, S.K., Lee, H.C., Woo, S.H., Yoo, D.H., Lee, S.J., Choe, TB., An, S., Kwon, TJ., et al. (2006). Synergistic induction of apoptosis by sulindac and arsenic trioxide in human lung cancer A549 cells via reactive oxygen species-dependent down-regulation of survivin. Biochem. Pharmcol. 72, 1228-1236. https://doi.org/10.1016/j.bcp.2006.07.026
  13. Jing, Y., Dai, J., Chalmers-Redman, R.M., Tatton, W.G., and Waxman, S. (1999). Arsenic trioxide selectively induces acute promyelocytic leukemia cell apoptosis via a hydrogen peroxidedependent pathway. Blood 94, 2102-2111.
  14. Kang, Y.H., Yi, M.J., Kim, M.J., Park, M.T., Bae, S., Kang, C.M., Cho, Cx., Park, I.C., Park, M.J., Rhee, C.H., et al. (2004). Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosisinducing factor release from mitochondria. Cancer Res. 64, 8960-8967. https://doi.org/10.1158/0008-5472.CAN-04-1830
  15. Kim, H.R., Kim, E.J., Yang, S.H., Jeong, E.T., Park, C., Kim, S.J., Youn, M.J., So, H.S., and Park, R. (2006). Combination treatment with arsenic trioxide and sulindac augments their apoptotic potential in lung cancer cells through activation of caspase cascade and mitochondrial dysfunction. Int. J. Oncol. 28, 1401-1408.
  16. Kitamura, K., Minami, Y., Yamamoto, K., Akao, Y., Kiyoi, H., Saito, H., and Naoe, T (2000). Involvement of CD95-independent caspase 8 activation in arsenic trioxide-induced apoptosis. Leukemia 14, 1743-1750. https://doi.org/10.1038/sj.leu.2401900
  17. Kito, M., Akao, Y., Ohishi, N., Yagi, K., and Nozawa, Y. (2002). Arsenic trioxide-induced apoptosis and its enhancement by buthionine sulfoximine in hepatocellular carcinoma cell lines. Biochem. Biophys. Res. Commun. 291, 861-867. https://doi.org/10.1006/bbrc.2002.6525
  18. Lauterburg, B.H. (2002). Analgesics and glutathione. Am. J. Ther. 9, 225-233. https://doi.org/10.1097/00045391-200205000-00008
  19. Li, M., Cai, J.F., and Chiu, J.F. (2002). Arsenic induces oxidative stress and activates stress gene expressions in cultured lung epithelial cells. J. Cell. Biochem. 87, 29-38. https://doi.org/10.1002/jcb.10269
  20. Li, J.J., Tang, Q., Li, Y., Hu, 8.R., Ming, Z.Y., Fu, Q., Qian, J.Q., and Xiang, J.Z. (2006). Role of oxidative stress in the apoptosis of hepatocellular carcinoma induced by combination of arsenic trioxide and ascorbic acid. Acta Pharmacol. Sin. 27, 1078-1084. https://doi.org/10.1111/j.1745-7254.2006.00345.x
  21. Lin, L.M., Li, SX, Xiao, J.B., Lin, D.H., and Yang, B.F. (2005). Synergistic effect of all-trans-retinoic acid and arsenic trioxide on growth inhibition and apoptosis in human hepatoma, breast cancer, and lung cancer cells in vitro. World J. Gastroenterol. 11, 5633-5637. https://doi.org/10.3748/wjg.v11.i36.5633
  22. Ling, Y.H., Jiang, JD., Holland, J.F., and Perez-Soler, R. (2002). Arsenic trioxide prcx luces pomerization of microtubules and mitotic arrest before apoptosis in human tumor cell lines. Mol. Pharmacol. 62, 529-538. https://doi.org/10.1124/mol.62.3.529
  23. Maeda, H., Hori, S., Ohizumi, H., Segawa, T, Kakehi, Y., Ogawa, 0., and Kakizuka, A (2004). Effective treatment of advanced sdid tumors by the combination of arsenic trioxide and Lbuthionine-suH'oximine. Cell Death Differ. 11, 737-746. https://doi.org/10.1038/sj.cdd.4401389
  24. Miller, W.H., Jr., Schipper, H.M., Lee, J.S., Singer, J., and Waxman, S. (2002). Mechanisms of action of arsenic trioxide. Cancer Res. 62, 3893-3903.
  25. Nakagawa, Y., Akao, Y., Morikawa, H., Hirata, I., Katsu, K., Naoe, T, Ohishi, N., and Yagi, K. (2002). Arsenic trioxide-induced apoptosis through oxidative stress in cells of colon cancer cell lines. Life Sci. 70, 2253-2269. https://doi.org/10.1016/S0024-3205(01)01545-4
  26. Oketani, M., Kohara, K., Tuvdendorj, D., Ishitsuka, K., Komorizono, Y., Ishibashi, K., and Arima, T (2002). Inhibition by arsenic trioxide of human hepatoma cell growth. Cancer Lett. 183, 147-153. https://doi.org/10.1016/S0304-3835(01)00800-X
  27. Park, W.H., Seol, J.G., Kim, E.S., Hyun, J.M., Jung, C.W., Lee, C.C., Kim, B.K., and Lee, Y.Y. (2000). Arsenic trioxide-mediated growth inhibition in MC/CAR myeloma cells via cell cycle arrest in association with induction of cyclin-dependent kinase inhibitor, p21, and apoptosis. Cancer Res. 50, 3065-3071.
  28. Petty, RD., Nicdson, M.C., Kerr, K.M., Collie-Duguid, E., and Murray, G.I. (2004). Gene expression profiling in non-small cell lung cancer: from molecular mechanisms to clinical application. Clin. Cancer Res. 10, 3237-3248. https://doi.org/10.1158/1078-0432.CCR-03-0503
  29. Poot, M., Teubert, H., Rabinovitch, P.S., and Kavanagh, TJ. (1995). De novo synthesis of glutathione is required for both entry into and progression through the cell cycle. J. Cell. Physiol. 163, 555-560. https://doi.org/10.1002/jcp.1041630316
  30. Pu, Y.S., Hour, TC., Chen, J., Huang, C.Y., Guan, J.Y., and Lu, S.H. (2002). Cytotoxicity of arsenic trioxide to transitional carcinoma cells. Urology 60, 346-350. https://doi.org/10.1016/S0090-4295(02)01699-0
  31. Schnelldorfer, T, Gansauge, S., Gansauge, F., Schlosser, S., Beger, H.G., and Nussler, AK. (2000). Glutathione depletion causes cell growth inhibition and enhanced apoptosis in pancreatic cancer cells. Cancer 89, 1440-1447. https://doi.org/10.1002/1097-0142(20001001)89:7<1440::AID-CNCR5>3.0.CO;2-0
  32. Seol, J.G., Park, W.H., Kim, E.S., Jung, C.W., Hyun, J.M., Kim, B.K., and Lee, Y.Y. (1999). Effect of arsenic trioxide on cell cycle arrest in head and neck cancer cell line PCI-1. Biochem. Biophys. Res. Commun. 265, 400-404. https://doi.org/10.1006/bbrc.1999.1697
  33. Shao, W., Fanelli, M., Ferrara, F.F., Riccioni, R., Rosenauer, A, Davison, K., Lamph, W.W., Waxman, S., Pelicci, P.G., Lo Coco, F., et al. (1998). Arsenic trioxide as an inducer of apoptosis and loss of PMURAR alpha protein in acute promyelocytic leukemia cells. J. Natl. Cancer Inst. 90, 124-133. https://doi.org/10.1093/jnci/90.2.124
  34. Shen, Z.Y., Shen, W.Y., Chen, M.H., Shen, J., and Zeng, Y. (2003). Reactive oxygen species and antioxidants in apoptosis of esophageal cancer cells induced by As203. Int. J. Mol. Med. 11, 479-484.
  35. Soignet, S.L., Maslak, P., Wang, z.G., Jhanwar, S., Calleja, E., Dardashti, L.J., Corso, D., DeBlasio, A, Gabrilove, J., Scheinberg, DA, et al. (1998). Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N. Engl. J. Med. 339, 1341-1348. https://doi.org/10.1056/NEJM199811053391901
  36. Uslu, R., Sanli, UA, Sezgin, C., Karabulut, B., Terzioglu, E., Omay, S.B., and Goker, E. (2000). Arsenic trioxide-mediated cytotoxicity and apoptosis in prostate and ovarian carcinoma cell lines. Clin. Cancer Res. 6, 4957-4964.
  37. Wang, Z.G., Rivi, R., Delva, L., Konig, A, Scheinberg, DA, Gambacorti-Passerini, C., Gabrilove, J.L., Warrell, R.P., Jr., and Pandolfi, P.P. (1998). Arsenic trioxide and melarsoprol induce programmed cell death in myeloid leukemia cell lines and function in a PML and PML-RARalpha independent manner. Blood 92, 1497-1504.
  38. Woo, S.H., Park, I.C., Park, M.J., Lee, H.C., Lee, S.J., Chun, Y.J., Lee, S.H., Hong, S.I., and Rhee, C.H. (2002). Arsenic trioxide induces apoptosis through a reactive oxygen species-dependent pathway and loss of mitochondrial membrane potential in HeLa cells. Int. J. Oncol. 21, 57-63.
  39. Wu, X.X., Ogawa, O., and Kakehi, Y. (2004). Enhancement of arsenic trioxide-induced apoptosis in renal cell carcinoma cells by L-buthionine sulfoximine. Int. J. Oncol. 24, 1489-1497.
  40. Zhang, W., Ohnishi, K., Shigeno, K., Fujisawa, S., Naito, K., Nakamura, S., Takeshita, K., Takeshita, A., and Ohno, R. (1998). The induction of apoptosis and cell cycle arrest by arsenic trioxide in lymphoid neoplasms. Leukemia 12, 1383-1391. https://doi.org/10.1038/sj.leu.2401112
  41. Zhang, T.C., Cao, E.H., Li, J.F., Ma, W., and Qin, J.F. (1999). Induction of apoptosis and inhibition of human gastric cancer MGC-803 cell growth by arsenic trioxide. Eur. J. Cancer 35, 1258-1263. https://doi.org/10.1038/sj.leu.2401112