DOI QR코드

DOI QR Code

In vitro Methanogenesis, Microbial Profile and Fermentation of Green Forages with Buffalo Rumen Liquor as Influenced by 2-Bromoethanesulphonic Acid

  • Agarwal, Neeta (Rumen Microbiology Laboratory, Centre of Advanced Studies in Animal Nutrition Indian Veterinary Research Institute) ;
  • Kamra, D.N. (Rumen Microbiology Laboratory, Centre of Advanced Studies in Animal Nutrition Indian Veterinary Research Institute) ;
  • Chatterjee, P.N. (Rumen Microbiology Laboratory, Centre of Advanced Studies in Animal Nutrition Indian Veterinary Research Institute) ;
  • Kumar, Ravindra (College of Veterinary Science, Sher-e-Kashmir University of Agriculture and Technology) ;
  • Chaudhary, L.C. (Rumen Microbiology Laboratory, Centre of Advanced Studies in Animal Nutrition Indian Veterinary Research Institute)
  • Received : 2007.06.14
  • Accepted : 2007.09.29
  • Published : 2008.06.01

Abstract

The interaction of fibre degrading microbes and methanogens was studied using two forages, lucerne (Medicago sativa) hay and maize (Zea mays) hay, as substrate and 2-bromoethanesulphonic acid (BES) as an additive in an in vitro gas production test. Gas and methane production (ml/g dry matter) were significantly higher (p<0.05) on lucerne as compared to maize hay. Inclusion of BES in the incubation medium significantly suppressed methane emission irrespective of substrate. The population density of total bacteria, fungi, Ruminococcus flavefaciens and Fibrobacter succinogenes was higher, whereas that of methanogens was lower with maize hay as compared to lucerne as substrate. BES suppressed methanogen population by 7 fold on lucerene and by 8.5 fold on maize at 24 h incubation as estimated by real time-PCR. This suppression was accompanied by almost complete (>98% of control) inhibition of methanogenesis. The proportion of acetate decreased, whereas that of propionate increased significantly by inclusion of BES, resulting in narrowing of acetate to propionate ratio. In vitro true digestibility (IVTD) of lucerne was significantly higher as compared to maize but BES inclusion did not affect IVTD.

Keywords

References

  1. Agarwal, N., I. Agarwal, D. N. Kamra and L. C. Chaudhury. 2000. Diurnal variations in the activities of hydrolytic enzymes in different fractions of rumen contents of Murrah buffaloes. J. App. Anim. Res. 18:73-80. https://doi.org/10.1080/09712119.2000.9706325
  2. Agarwal, N., J. Saxena, S. Saha, L. C. Chaudhary and D. N. Kamra. 2004. Changes in fermentation characteristics, microbial populations and enzyme profile in the rumen of buffalo as affected by roughage level in the diet. Bubalus bubalis III:81-90
  3. AOAC. 1995. Official Methods of Analysis, 16th ed., Association of Official Analytical Chemists, Washington, DC
  4. Choi, N. J., S. Y. Lee, H. G. Sung, S. C. Lee and J. K. Ha. 2004. Effects of halogenated compounds, organic acids, unsaturated fatty acids on in vitro methane production. Asian-Aust. J. Anim. Sci. 17:1255-1259 https://doi.org/10.5713/ajas.2004.1255
  5. Cottyn, B. G. and C. V. Boucque. 1968. Rapid method for the gaschromatographic determination of volatile fatty acids in rumen fluid. J. Agric. Food Chem. 16:105-107. https://doi.org/10.1021/jf60155a002
  6. Denman, S. E. and C. S. McSweeney. 2005. Quantitative (real time) PCR. In: Methods in Gut Microbial Ecology for Ruminants (Ed. H. P. S. Makkar and C. S. McSweeney). Springer, Netherlands, pp. 105-115
  7. Denman, S. E., N. Tomkins and C. S. McSweeney. 2005. Monitoring the effect of bromochloromethane on methanogen population within the rumen using q-PCR. 2nd International Conference on Greenhouse Gases and Animal Agriculture, 20-24 September, pp. 112-114.
  8. Hristov, A. N., T. A. McAllister and K. J. Cheng. 1999. Effect of diet, digesta processing, freezing and extraction procedure on some polysaccharide degrading activities of ruminal contents. Canadian J. Anim. Sci. 79:73-81. https://doi.org/10.4141/A98-056
  9. IAEA. 2004. qPCR workshop for Rumen microbial ecology. International Atomic Energy Agency, pp 1-38, Australia.
  10. IPCC. 1996. Intergovernmental Panel on Climate Change. Greenhouse Gas Inventories Revised Methodology. Guidelines for National Greenhouse Gas Inventories, Volume, 3. Blackwell.
  11. Johnson, D. E., T. M. Hill, B. R. Carmean, L. W. Lodman and G. M. Warm. 1991. New perspective on ruminant methane production. In: Energy Metabolism of Farm Animal (Ed. C. Wenk and M. Boessinger). Zurich, Switzerland.
  12. Johnson, E. D., A. S. Wood, J. E. Wtone and E. T. Moran. 1972. Some effects of methane inhibition in ruminants. Canadian J. Anim. Sci. 52:703-712 https://doi.org/10.4141/cjas72-083
  13. Kamra, D. N., S. Saha, N. Bhatt, L. C. Chaudhary and N. Agarwal. 2003. Effect of diet on enzyme profile, biochemical changes and in sacco degradability of feeds in the rumen of buffalo. Asian-Aust. J. Anim. Sci. 16:374-379. https://doi.org/10.5713/ajas.2003.374
  14. Kumar, R., D. N. Kamra, N. Agarwal and L. C. Chaudhary. 2007. In vitro methanogenesis and fermentation of feeds containing oil seed cakes with rumen liquor of buffalo. Asian-Aust. J. Anim. Sci. 20:1196-1200. https://doi.org/10.5713/ajas.2007.1196
  15. Lila, Z. A., N. Mohammed, S. Kanda, M. Kurihara and H. Itabashi. 2005. Sarsaponin effects on ruminal fermentation and microbes, methane production, digestibility and blood metabolites in steers. Asian-Aust. J. Anim. Sci. 18:1746-1751. https://doi.org/10.5713/ajas.2005.1746
  16. Lowry, O. H., N. J. Rosenbrough, A. R. Farr and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
  17. Martin, S. A. and J. M. Macy. 1985. Effects of monensin, pyromellitic diimide and bromoethanesulphonic acid on rumen fermentation in vitro. J. Anim. Sci. 60:544-550. https://doi.org/10.2527/jas1985.602544x
  18. Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained by chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop. 28:7-55.
  19. Russel, J. B. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production. J. Dairy Sci. 81:3222-3230. https://doi.org/10.3168/jds.S0022-0302(98)75886-2
  20. Saravanan, T. S. 2000. Effect of bromochloromethane on methanogenesis, nutrient utilization and growth rate of lambs. M.V.Sc. Thesis, IVRI, Izatnagar, India.
  21. Sauer, F. D. and R. M. Teather. 1987. Changes in oxidationreduction potentials and volatile fatty acid production by rumen bacteria when methane synthesis is inhibited. J. Dairy Sci. 70:1835-1840. https://doi.org/10.3168/jds.S0022-0302(87)80222-9
  22. SPSS. 1996. Statistical Packages for Social Sciences version 7.5, SPSS Inc., Illinois, USA.
  23. Tomkins, N. W. and R. A. Hunter. 2003. Methane mitigation in beef cattle using a patented antimethanogen. In Proceedings 2nd Joint Australia and New Zealand Forum on Non-$CO_2$ Greenhouse Gas Emission from Agriculture (Ed. R. Eckard). CRC for Greenhouse Accounting, Canberra.
  24. Trei, J. E., R. C. Parish, Y. K. Singh and G. C. Scott. 1971. Effect of methane inhibitors on rumen metabolism and feedlot performance of sheep. J. Dairy Sci. 154:536-540.
  25. Van Soest, P. J. and J. B. Robertson. 1988. A laboratory Manual for Animal Science 612, Cornell University, USA.
  26. Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharide in relation to animal nutrition. J. Dairy Sci. 74: 3585-3597.
  27. Weatherburn, M. W. 1967. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 39:971-974. https://doi.org/10.1021/ac60252a045
  28. Wina, E., S. Muetzel, E. Hoffman, H. P. S. Makkar and K. Becker. 2005. Saponins containing methanol extract of Sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Anim. Feed Sci. Technol. 121:159-174. https://doi.org/10.1016/j.anifeedsci.2005.02.016

Cited by

  1. ) under different feeding regimes vol.97, pp.2, 2013, https://doi.org/10.1111/j.1439-0396.2011.01270.x
  2. Influence of supplementation of tropical plant feed additives on in vitro rumen fermentation and methanogenesis vol.54, pp.10, 2014, https://doi.org/10.1071/AN14366
  3. Impact of levels of total digestible nutrients on microbiome, enzyme profile and degradation of feeds in buffalo rumen vol.12, pp.2, 2017, https://doi.org/10.1371/journal.pone.0172051
  4. Contribution of Ruminal Fungi, Archaea, Protozoa, and Bacteria to the Methane Suppression Caused by Oilseed Supplemented Diets vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.01864
  5. Effect of feeding of blend of essential oils on methane production, growth, and nutrient utilization in growing buffaloes vol.31, pp.5, 2018, https://doi.org/10.5713/ajas.16.0508
  6. Nutritional Management for Buffalo Production vol.22, pp.7, 2009, https://doi.org/10.5713/ajas.2009.r.09
  7. Effect of feeding tannin degrading bacteria (Isolate-6) on rumen fermentation, nutrient utilization and growth performance of goats fed on Ficus infectoria leaves vol.99, pp.2, 2008, https://doi.org/10.1016/j.smallrumres.2011.04.011
  8. Effect of Feeding Ficus infectoria Leaves on Rumen Microbial Profile and Nutrient Utilization in Goats vol.24, pp.6, 2008, https://doi.org/10.5713/ajas.2011.10199
  9. Effects of Plants Containing Secondary Metabolites on Ruminal Methanogenesis of Sheep in vitro vol.74, pp.None, 2008, https://doi.org/10.1016/j.egypro.2015.07.513
  10. Methanobacterium formicicum as a target rumen methanogen for the development of new methane mitigation interventions: A review vol.6, pp.None, 2018, https://doi.org/10.1016/j.vas.2018.09.001
  11. Whole-Genome Resequencing Reveals Adaptation Prior to the Divergence of Buffalo Subspecies vol.13, pp.1, 2008, https://doi.org/10.1093/gbe/evaa231