New Perspectives on Plant Defense Responses through Modulation of Developmental Pathways

  • Chung, Kwi-Mi (Nara Institute of Science and Technology, Graduate School of Biological Sciences) ;
  • Igari, Kadunari (Nara Institute of Science and Technology, Graduate School of Biological Sciences) ;
  • Uchida, Naoyuk (Nara Institute of Science and Technology, Graduate School of Biological Sciences) ;
  • Tasaka, Masao (Nara Institute of Science and Technology, Graduate School of Biological Sciences)
  • Received : 2008.06.04
  • Accepted : 2008.06.06
  • Published : 2008.08.31

Abstract

Invasion mechanisms of pathogens and counteracting defense mechanisms of plants are highly diverse and perpetually evolving. While most classical studies of plant defense have focused only on defense-specific factor-mediated responses, recent work is beginning to shed light on the involvement of non-stress signal components, especially growth and developmental processes. This shift in focus links plant resistance more closely with growth and development. In this review, we summarize our current understanding of how pathogens manipulate host developmental processes and, conversely, of how plants deploy their developmental processes for self-protection. We conclude by introducing our recent work on UNI, a novel R protein in Arabidopsis which mediates cross-talk between developmental processes and defense responses.

Keywords

References

  1. Abramovitch, R.B., Anderson, J.C., and Martin, G.B. (2006). Bacterial elicitation and evasion of plant innate immunity. Nat. Rev. Mol. Cell. Biol. 7, 601-611. https://doi.org/10.1038/nrm1984
  2. Aida, M., Ishida, T., and Tasaka, M. (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126, 1563-1570.
  3. Atkinson, M.M., and Baker, C.J. (1987). Alteration of plasma membrane $K^+/H^+$ exchange with multiplication of Pseudomonas syringae pv. syringae and its association with $K^+/H^+$ exchange. Phytopathology 77, 1573-1578. https://doi.org/10.1094/Phyto-77-1573
  4. Ausubel, F.M. (2005). Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6, 973-979. https://doi.org/10.1038/ni1253
  5. Bergmann, D.C., Lukowitz, W., and Somerville, C.R. (2004). Stomatal development and pattern controlled by a MAPKK kinase. Science 304, 1494-1497. https://doi.org/10.1126/science.1096014
  6. Byrne, M.E., Barley, R., Curtis, M., Arroyo, J.M., Dunham, M., Hudson, A., and Martienssen, R.A. (2000). ASYMMETRIC LEAVES1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 408, 967-971. https://doi.org/10.1038/35050091
  7. Byrne, M.E., Simorowski, J., and Martienssen, R.A. (2002). ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development 129, 1957-1965.
  8. Carimi, F., Zottini, M., Formentin, E., Terzi, M., and Lo Schiavo, F. (2003). Cytokinins: new apoptotic inducers in plants. Planta 216, 413-421.
  9. Carles, C.C., and Fletcher, J.C. (2003). Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci. 8, 394-401. https://doi.org/10.1016/S1360-1385(03)00164-X
  10. Clark, S.E. (2001). Cell signaling at the shoot meristem. Nat. Rev. Mol. Cell. Biol. 2, 276-284. https://doi.org/10.1038/35067079
  11. Depuydt, S., Dolezal, K., Van Lijsebettens, M., Moritz, T., Holsters, M., and Vereecke, D. (2008). Modulation of the hormone setting by Rhodococcus fascians results in ectopic hklu activation in Arabidopsis. Plant Physiol. 146, 1267-1281. https://doi.org/10.1104/pp.107.113969
  12. Devoto, A., and Turner, J.G. (2003). Regulation of jasmonatemediated plant responses in Arabidopsis. Ann. Bot. 92, 329-337. https://doi.org/10.1093/aob/mcg151
  13. Ding, X., Cao, Y., Huang, L., Zhao, J., Xu, C., Li, X., and Wang, S. (2008). Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate- and jasmonate-independent basal immunity in rice. Plant Cell 20, 228-240. https://doi.org/10.1105/tpc.107.055657
  14. Fett, W.F., Osman, S.F., and Dunn, M.F. (1987). Auxin production by plant-pathogenic Pseudomonads and Xanthomonads. Appl. Environ. Microbiol. 53, 1839-1845.
  15. Gan, S., and Amasino, R.M. (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270, 1986- 1988. https://doi.org/10.1126/science.270.5244.1986
  16. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43, 205-227. https://doi.org/10.1146/annurev.phyto.43.040204.135923
  17. Godiard, L., Sauviac, L., Torii, K.U., Grenon, O., Mangin, B., Grimsley, N.H., and Marco, Y. (2003). ERECTA, an LRR receptorlike kinase protein controlling development pleiotropically affects resistance to bacterial wilt. Plant J. 36, 353-365. https://doi.org/10.1046/j.1365-313X.2003.01877.x
  18. Grant, J.J., Chini, A., Basu, D., and Loake, G.J. (2003). Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens. Mol. Plant Microbe Interact. 16, 669-680. https://doi.org/10.1094/MPMI.2003.16.8.669
  19. Guo, M., Thomas J., Collins, G., and Timmermans, M.C. (2008). Direct repression of hklu loci by the ASYMMETRIC LEAVES1 complex of Arabidopsis. Plant Cell 20, 48-58. https://doi.org/10.1105/tpc.107.056127
  20. He, K., Gou, X., Yuan, T., Lin, H., Asami, T., Yoshida, S., Russell, S.D., and Li, J. (2007). BAK1 and BKK1 regulate brassinosteroid- dependent growth and brassinosteroid-independent celldeath pathways. Curr. Biol. 17, 1109-1115. https://doi.org/10.1016/j.cub.2007.05.036
  21. Igari, K., Endo, S., Hibara, K., Aida, M., Sakakibara, H., Kawasaki, T., and Tasaka, M. (2008). Constitutive activation of a CC-NBLRR protein alters morphogenesis through the cytokinin pathway in Arabidopsis. Plant J. 55, 14-27. https://doi.org/10.1111/j.1365-313X.2008.03466.x
  22. Jones, J.D.G., and Dangl, J.L. (2006). The plant immune system. Nature 44, 323-329. https://doi.org/10.1038/044323a0
  23. Kemmerling, B., Schwedt, A., Rodriguez, P., Mazzotta, S., Frank, M., Qamar, S.A., Mengiste, T., Betsuyaku, S., Parker, J.E., Müssig, C., et al. (2007). The BRI1-associated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr. Biol. 17, 1116-1122. https://doi.org/10.1016/j.cub.2007.05.046
  24. Lease, K.A., Wen, J., Li, J., Doke, J.T., Liscum, E., and Walker, J.C. (2001). A mutant Arabidopsis heterotrimeric G-protein $\beta$ subunit affects leaf, flower, and fruit development. Plant Cell 14, 2631- 2641.
  25. Li, X., Clarke, J.D., Zhang, Y., and Dong, X. (2001). Activation of an EDS1-mediated R-gene pathway in the snc1 mutant leads to constitutive, NPR1-independent pathogen resistance. Mol. Plant Microbe Interact. 14, 1131-1139. https://doi.org/10.1094/MPMI.2001.14.10.1131
  26. Li, J., Wen, J., Lease, K.A., Doke, J.T., Tax, F.E., and Walker, J.C. (2002). BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213-222. https://doi.org/10.1016/S0092-8674(02)00812-7
  27. Llorente, F., Alonso-Blanco, C., Sánchez-Rodriguez, C., Jorda, L., and Molina, A. (2005). ERECTA receptor-like kinase and heterotrimeric G protein from Arabidopsis are required for resistance to the necrotrophic fungus Plectosphaerella cucumerina. Plant J. 43,165-180. https://doi.org/10.1111/j.1365-313X.2005.02440.x
  28. Mackey, D., Holt, B.F., Wiig, A., and Dangl, J.L. (2002). RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 118, 743-754.
  29. Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R., and Dangl, J.L. (2003). Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379-389. https://doi.org/10.1016/S0092-8674(03)00040-0
  30. Mazzola, M., and White, F.F. (1994). A mutation in the indole-3-acetic acid biosynthesis pathway of Pseudomonas syringae pv. syringae affects growth in Phaseolus vularis and syringomycin production. J. Bacteriol. 176, 1374-1382. https://doi.org/10.1128/jb.176.5.1374-1382.1994
  31. Memelink, J., Hoge, J.H.C., and Schilperoort, R.A. (1987). Cytokinin stress changes the developmental regulation of several defencerelated genes in tobacco. EMBO J. 6, 3597-3583.
  32. Mlejnek, P., and Prochazka, S. (2002). Activation of caspase-like proteases and induction of apoptosis by isopentenyladenosine in tobacco BY-2 cells. Planta 215, 158-166. https://doi.org/10.1007/s00425-002-0733-5
  33. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J.D.G. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436-439. https://doi.org/10.1126/science.1126088
  34. Nurmberg, P.L., Knox, K.A., Yun, B.-W., Morris, P.C., Shafiei, R., Hudson, A., and Loake, G.J. (2007). The developmental selector AS1 is an evolutionarily conserved regulator of the plant immune response. Proc. Natl. Acad. Sci. USA 104, 18795-18800.
  35. Padmanabhan, M.S., Goregaoker, S.P., Golem, S., Shiferaw, H., and Culver, J.N. (2005). Interaction of the tobacco mosaic virus replicase protein with the Aux/lAA protein PAP1/1AA26 is associated with disease development. J. Virol. 79,2549-2558. https://doi.org/10.1128/JVI.79.4.2549-2558.2005
  36. Padmanabhan, M.S., Shiferaw, H., and Culver, J.N. (2006). The tobacco mosaic virus replicase protein disrupts the localization and function of interacting Aux/lAA proteins. Mol. Plant Microbe Interact. 19, 864-873. https://doi.org/10.1094/MPMI-19-0864
  37. Padmanabhan, M.S., Kramer, S.R, Wang, X., and Culver, J.N. (2008). Tobacco mosaic virus replicase-auxinlindole acetic acid protein interactions: reprogramming the auxin response pathway to enhance virus infection. J. Virol. 82,2477-2485. https://doi.org/10.1128/JVI.01865-07
  38. Park, J.-E, Park, J.-Y., Kim, Y.-S., Staswick, PE, Jeon, J., Yun, J., Kim, S.-Y., Kim, J., Lee, Y.-H., and Park, C.-M. (2007). GH3mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis. J. Biol. Chem. 282, 10036-10046. https://doi.org/10.1074/jbc.M610524200
  39. Prusty, R, Grisafi, P., and Fink, G.R (2004). The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 101,4153-4157.
  40. Roitsch, T., and Ehne13, R (2000). Regulation of source/sink relations by cytokinins. Plant Growth Regul. 32, 359-367. https://doi.org/10.1023/A:1010781500705
  41. Rojo, E, Solano, R, and Sanchez-Serrano, J.J. (2003). Interactions between signaling compounds involved in plant defense. J. Plant Growth Regul. 22, 82-98. https://doi.org/10.1007/s00344-003-0027-6
  42. Sano, H., Seo, S., Orudgev, E, Youssefian, S., Ishizuka, K., and Ohashi, Y. (1994). Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic acid in response to wounding, and increases resistance to tobacco mosaic virus infection. Proc. Natl. Acad. Sci. USA 91, 10556-10560.
  43. Schulze-Lefert, P., and Robatzek, S. (2006). Plant pathogens trick guard cells into opening the gates. Cell 126, 831-834. https://doi.org/10.1016/j.cell.2006.08.020
  44. Shirano, Y., Kachroo, P., Shah, J., and Klessig, D.F. (2002). A gainof-function mutation in an Arabidopsis Tollinterieukin1 receptornucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14, 3149-3162. https://doi.org/10.1105/tpc.005348
  45. Stokes, T.L., Kunkel, B.N., and Richards, EJ. (2002). Epigenetic variation in Arabidopsis disease resistance. Genes Dev. 16, 171-182. https://doi.org/10.1101/gad.952102
  46. Thomashow, L.S., Reeves, S., and Thomashow, M.F. (1984). Crown gall oncogenesis: evidence that a T-DNA gene from Agrobacterium Ti plasmid pTiA6 encodes an enzyme that catalyzes synthesis of indoleacetic acid. Proc. Natl. Acad. Sci. USA 81, 5071-5075.
  47. Torii, K.U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R, Whittier, RF., and Komeda, Y. (1996) The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8, 735-746. https://doi.org/10.1105/tpc.8.4.735
  48. Ueda, H., Yamaguchi, Y., and Sano, H. (2006). Direct interaction between the tobacco mosaic virus helicase domain and the ATPbound resistance protein, N factor during the hypersensitive reNew Perspectives on Plant Defense sponse in tobacco plants. Plant Mol. Biol. 61,31-45. https://doi.org/10.1007/s11103-005-5817-8
  49. Underwood, W., Melotto, M., and He, S.Y. (2007). Role of stomata in bacterial invasion. Cell. Microbiol. 9, 1621-1629. https://doi.org/10.1111/j.1462-5822.2007.00938.x
  50. Vance, C.P., Kirk, TK, and Sherwood, RT. (1980). Lignification as a mechanism of disease resistance. Annu. Rev. Phytopatholol. 18, 259-288. https://doi.org/10.1146/annurev.py.18.090180.001355
  51. Walters, DR, and McRoberts, N. (2006). Plants and biotrophs: a pivotal role for cytokinins? Trends Plant Sci. 11, 581-586. https://doi.org/10.1016/j.tplants.2006.10.003
  52. Walters, D.R, McRoberts, N., and Fitt, BD.L. (2008). Are green island red herrings? Significance of green islands in plant interactions with pathogens and pests. BioI. Rev. 83, 79-102.
  53. Wang, K.L.-C., Li, H., and Ecker, J.R (2002). Ethylene biosynthesis and signaling networks. Plant Cell 14, S131-151. https://doi.org/10.1105/tpc.001768
  54. Wang, D., Pajerowska-Mukhtar, K., Culler, A.H., and Dong, X. (2007a). Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr. Biol. 17, 1784-1790. https://doi.org/10.1016/j.cub.2007.09.025
  55. Wang, H., Ngwenyama, N., Liu, Y., Walker, J.C., and Zhang, S. (2007b). Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19, 63-73. https://doi.org/10.1105/tpc.106.048298
  56. White, F.F., and Ziegier, S.F. (1991). Cloning of the genes for indoleacetic acid synthesis from Pseudomonas syringae pv. syringae. Mol. Plant Microbe Interact. 4, 207-210. https://doi.org/10.1094/MPMI-4-207
  57. Yang, S., and Hua, J. (2004). A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16, 1060-1071. https://doi.org/10.1105/tpc.020479