DOI QR코드

DOI QR Code

The Probiotic and Adherence Properties of Lactobacillus reuteri Pg4 Expressing the Rumen Microbial β-Glucanase

  • Yu, B. (Department of Animal Science, National Chung-Hsing University) ;
  • Liu, J.R. (Institute of Biotechnology and Department of Animal Science and Technology, National Taiwan University) ;
  • Hsiao, F.S. (Department of Animal Science, National Chung-Hsing University) ;
  • Lee, T.T. (Department of Life Science, Mingdao University) ;
  • Chiou, P.W.S. (Chung-Jen College of Nursing, Health Science and Management)
  • 투고 : 2007.09.14
  • 심사 : 2007.12.02
  • 발행 : 2008.09.01

초록

This study was conducted to evaluate the potential of the transformed Lactobacillus reuteri Pg4 (T-Pg4) harboring the ${\beta}$-glucanase gene as a poultry probiotic. The probiotic properties of the T-Pg4 strain were evaluated in vitro by their adherence capability and acid and bile salt tolerance, and were evaluated in vivo by their survival and adhesion in the gastrointestinal tract (GIT) of specific-pathogen-free (SPF) chickens. The results showed that the T-Pg4 strain exhibited resistance to acidic conditions and contact with bile salt, and adhered efficiently to the crop and intestinal epithelial cells of chickens in vitro. The T-Pg4 strain also could survive and colonize the gastrointestinal epithelium of the experimental SPF chickens in vivo. In addition, radial enzyme diffusion was used to demonstrate that the Lactobacillus spp. randomly isolated from the GIT of the SPF chickens fed T-Pg4 possessed ${\beta}$-glucanase secretion capability. These findings have demonstrated that the transformed L. reuteri Pg4 survives transit through the stomach and intestine, and may secrete ${\beta}$-glucanase in the chicken GIT. Therefore, it is suggested that this organism could be used as a multifunctional poultry probiotic.

키워드

참고문헌

  1. Almirall, M., M. Francesch, A. M. P. Vendrell, J. Brufau and E. E. Garcia. 1995. The differences in intestinal viscosity produced by barley and $\beta$-glucanase alter digesta enzyme activities and ileal nutrient digestibilities more in broiler chicks than in cocks. J. Nutr. 125:947-955.
  2. Annika, M. M., M. Manninen and H. Gylienberg. 1983. The adherence of lactic acid bacteria to the colunmar epithelial cells of pigs and calves. J. Appl. Bacteriol. 55:241-245. https://doi.org/10.1111/j.1365-2672.1983.tb01321.x
  3. Bouzaine, T., R. D. Dauphin, P. Thonart, M. C. Urdaci and M. Hamdi. 2005. Adherence and colonization properties of Lactobacillus rhamnosus TB1, a broiler chicken isolate. Lett. Appl. Microbiol. 40:391-396 https://doi.org/10.1111/j.1472-765X.2005.01684.x
  4. Chou, L. S. and B. Weimer. 1999. Isolation and characterization of acid- and bile-tolerant isolates from strains of Lactobacillus acidophilus. J. Dairy Sci. 82:23-31 https://doi.org/10.3168/jds.S0022-0302(99)75204-5
  5. Conway, P. L., S. L. Gorback and B. R. Goldin. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70:1-12 https://doi.org/10.3168/jds.S0022-0302(87)79974-3
  6. Droleskey, R. E., D. E. Corrier, D. J. Nisbet and J. R. DeLoach. 1995. Colonization of cecal mucosa epithelium in chicks treated with a continuous flow culture of 29 characterized bacteria: confirmation by scanning electron microscopy. J. Food Prot. 58:837-842 https://doi.org/10.4315/0362-028X-58.8.837
  7. Gilliland, S. E. and D. K. Walker. 1990. Factors to consider when selecting a dietary adjnnct to produce a hypocholesteroleric effect in humans. J. Dairy Sci. 73:905-911 https://doi.org/10.3168/jds.S0022-0302(90)78747-4
  8. Havenaar, R., B. T. Brink and J. H. J. Huis In't Veld. 1992. Selection of strains for probiotics use (Ed. R. Fuller). Probiotics: The Scientific Basis. pp. 209-222. Chapman and Hall, Landon
  9. Jin, L. Z., Y. W. Ho, N. Abdullah, H. Kudo and S. Jalaludin. 1997. Studies on the intestinal micro flora of chicken under tropical condition. Asian-Aust. J. Anim. Sci. 10:495-504. https://doi.org/10.5713/ajas.1997.495
  10. Jin, L. Z., Y. W. Ho, M. A. Ali, N. Abdullah, K. B. Ong and S. Jalaludin. 1998. Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Lett. Appl. Microbiol. 27: 183-185 https://doi.org/10.1046/j.1472-765X.1998.00405.x
  11. Kim, H. J., H. S. Shin, W. K. Ha, H. J. Yang and S. W. Lee. 2006. Characterization of lactic bacterial strains isolated from raw milk. Asian-Aust. J. Anim. Sci. 19:131-136
  12. Liu, J. R., B. Yu, F. H. Liu, K. J. Cheng and X. Zhao. 2005. Expression of rumen microbial fibrolytic enzyme genes in probiotic Lactobacillus reuteri. Appl. Environ. Microbiol. 71:6769-6775 https://doi.org/10.1128/AEM.71.11.6769-6775.2005
  13. Ouwehand, A. C., P. Niemi and S. J. Salminen. 1999. The normal faecal micro flora does not affect the adhesion of probiotic bacteria in vitro. FEMS Microbiol. Lett. 177:35-38 https://doi.org/10.1111/j.1574-6968.1999.tb13710.x
  14. Patterson, J. A. and K. M. Burkholder. 2003. Application of prebiotics and probiotics in poultry production. Poult. Sci. 82:627-631 https://doi.org/10.1093/ps/82.4.627
  15. Pedersen, K. and G. W. Tannock. 1989. Colonization of the porcine gastrointestinal tract by Lactobacilli. Appl. Environ. Microbiol. 55:279-283
  16. Reid, G. and R. Friendship. 2002. Alternatives to antibiotic use: probiotics for the gut. Anim. Biotechnol. 13:97-112 https://doi.org/10.1081/ABIO-120005773
  17. Savage, D. C. 1983. Mechanisms by which indigenous microorganism colonize gastrointestinal epithelial surfaces. Prog. Fd. Nutr. Sci. 7:65-75
  18. Statistical Analysis System Institute. 1999. SAS User's Guide: Statistics. SAS Institute Inc., Cary, NC
  19. Steidler, L. 2003. Genetically engineered probiotics. Best Pract. Res. Cl. Ga. 17:861-876. https://doi.org/10.1016/S1521-6918(03)00072-6
  20. Strornpfova, V., A. Laukova and A. C. Ouwehand. 2004. Selection of enterococci for potential canine pro biotic additives. Vet. Microbiol. 100:107-114. https://doi.org/10.1016/j.vetmic.2004.02.002
  21. Toit, M., C. M. A. P. Franz, L. M. T. Dicks, U. Schillinger, P. Haberer, B. Warlies, F. Ahrens and W. H. Holzafel. 1998. Characterization and selection of probiotic lactobacilli for a preliminary minipig feeding trial and their effect on serum cholesterol level, faeces pH and faeces moisture content. Int. J. Food Microbiol. 40:93-104. https://doi.org/10.1016/S0168-1605(98)00024-5
  22. Wood, P. J. 1981. The use of dye-polysaccharide interactions in ${\beta}$-glucanase assay. Carbohydr. Res. 94:C19. https://doi.org/10.1016/S0008-6215(00)80727-2
  23. Yu, B., Y. M. Sun and P. W. S. Chiou. 2002. Effects of glucanase inclusion in a de-hulled barley diet on the growth performance and nutrient digestion of broiler chickens. Anim. Feed Sci. Technol. 102:35-52. https://doi.org/10.1016/S0377-8401(02)00218-3
  24. Yu, B., J. R. Liu, M. Y. Chiou, Y. R. Hsu and P. W. S. Chiou. 2007. The effects of probiotic Lactobacillus reuteri Pg4 strain on intestinal characteristics and performance in broilers. AsianAust. J. Anim. Sci. 20:1243-1251. https://doi.org/10.5713/ajas.2007.1243

피인용 문헌

  1. Lactobacillus plantarum S27 from chicken faeces as a potential probiotic to replace antibiotics: in vivo evidence vol.11, pp.2, 2008, https://doi.org/10.3920/bm2019.0116