Molecular Size Distributions of NOM in Conventional and Advanced Water Treatment Processes

기존수처리 공정 및 고도정수처리 공정에서 NOM의 분자크기 분포 변화

  • Choi, Il-Hwan (Water Analysis and Research Center, Korea Water Resources Corporation) ;
  • Jung, Yu-Jin (Water Analysis and Research Center, Korea Water Resources Corporation)
  • 최일환 (한국수자원공사 수돗물분석연구센터) ;
  • 정유진 (한국수자원공사 수돗물분석연구센터)
  • Received : 2008.06.02
  • Accepted : 2008.10.14
  • Published : 2008.11.30

Abstract

The purpose of this study was to find out the variation between molecular size distribution (MSD) of natural organic matter (NOM) in raw waters after different water treatment processes like conventional process (coagulation, flocculation, filtration) followed by advanced oxidation process (ozonation, GAC adsorption). The MSD of NOM of Suji pilot plant were determined by Liquid Chromatography-Organic Carbon Detection (LC-OCD) which is a kine of high-performance size-exclusion chromatography (HPSEC) with nondispersive infrared (NDIR) detector and $UV_{254}$ detector. Five distinct fractions were generally separated from water samples with the Toyopearl HW-50S column, using 28 mmol phosphate buffer at pH 6.58 as an eluent. Large and intermediate humic fractions were the most dominant fractions in surface water. High molecular weight (HMW) matter was clearly easier to remove in coagulation and clarification than low molecular weight (LMW) matter. Water treatment processes removed the two largest fractions almost completely shifting the MSD towards smaller molecular size in DW. No more distinct variation of MSD was observed by ozone process after sand filtration but the SUVA value were obviously reduced during increase of the ozone doses. UVD results and HS-Diagram demonstrate that ozone induce not the variation of molecular size of humic substance but change the bond structure from aromatic rings or double bonds to single bond. Granular activated carbon (GAC) filtration removed 8~9% of organic compounds and showed better adsorption property for small MSD than large one.

Keywords

References

  1. 김도희, 안효원, 조재원(2004). Flow Field Flow Fraction (FIFFF)를 이용한 멤브레인 전하 및 이온강도가 자연유기물분리 및 멤브레인 오염에 미치는 영향. 대한환경공학회지, pp. 798-803
  2. 김성진, 홍성호(2005). 응집과 오존처리가 NOM 분자량 분포 특성과 활성탄 흡착능에 미치는 영향. 상하수도학회지, 19(4), pp. 480-486
  3. 손희종, 최근주, 김상구(2007). 활성탄 공정과 생물여과 공정에서의 자연유기물질 제거특성. 대한환경공학회지, pp. 205-213
  4. 허진, 신재기, 박성원(2006). 하천 및 호소 수질관리를 위한 용존 자연유기물질 형광특성 분석. 대한환경공학회지, pp. 940-948
  5. 홍성호, 김성진, 오현제(2003). 강화된 응집이 활성탄 흡착에 미치는 영향. 상하수도학회지, 17(3), pp. 378-385
  6. Allpike, B. P., Heitz, A., Joll, C. A., and Kagi, R. I. (2007). A new organic carbon detector for size exclusion chromatography. Journal of Chromatography A, 1157, pp. 472-476 https://doi.org/10.1016/j.chroma.2007.05.073
  7. Amy, G., Sierka, R. A., Bedessem, J., Price, D., and Tan, L. (1992). Molecular size distributions of dissolved organic matter. Journal of American Water Works Association, 84(6), pp. 67-75 https://doi.org/10.1002/j.1551-8833.1992.tb07377.x
  8. Bradley, P. A., Heitz, A., Cynthia A., Robert, J., and Kagi, I. (2007). A new organic carbon detector for size exclusion chromatography. Journal of Chromatography, 1157, pp. 472-476 https://doi.org/10.1016/j.chroma.2007.05.073
  9. Buffle, J. (1988). Complexation reaction in a aquatic systems. Ellis Horwood
  10. Conte, P. and Piccola, A. (1999). High pressure size exclusion chromatography (HPSEC) of humic substances: molecular sizes, analytical parameters and column performance. Chemosphere, 38, pp. 517-528 https://doi.org/10.1016/S0045-6535(98)00198-2
  11. Cornelissen, E. R., Moreau, N., Siegers, W. G., Abrahamse, A. J., Rietveld, L. C., Grefte, A., Dignum, M., Amy, G., and Wessels, L. P. (2008). Selection of anionic exchange resins for removal of natural organic matter (NOM) fractions. Water Research, 42(1-2), pp. 413-423 https://doi.org/10.1016/j.watres.2007.07.033
  12. Croue, J. P., Debroux, J. F., Amy, G., Aiken, G. R., and Leenheer, J. A. (1999). Natural organic matter: structural characteristics and reactive properties. In: P. C. Singer (ed.) Formation and control of disinfection by-products in drinking water. Denver, American Water Work Association, pp. 65-117
  13. Her, N., Amy, G., Foss, D., Cho, J., Yoon, Y., and Kosenka, P. (2002). Optimization of Method for Detecting and Characterizing NOM by HPLC-Size Exclusion Chromatography with UV and On-Line DOC Detection. Environ. Sci. Technol., 36, pp. 1069-1076 https://doi.org/10.1021/es015505j
  14. Hongve, D., Kesson, G., and Becher, G. (1989). Some effects of ozonation of humic substances in drinking water. Lecture Notes in Earth Sciences, Springer, Berlin, Germany, pp. 217-223
  15. Huber, S. and Frimmel, F. H. (1992). A liquid chromatographic system with multi-detection for the direct analysis of hydrophilic organic compounds in natural waters. Fresenius' Journal of Analytical Chemistry, 342(1-2), pp. 198-200 https://doi.org/10.1007/BF00321726
  16. Huber, S. (1998). The value of chromatographic characterization of TOC in process water plants. Ultrapure Water, pp. 16-20
  17. Kainulainen, T., Tuhkanen, T., Vartiainen, T., Heinonen-Tanski, H., and Kalliokoski, P. (1994). The effect of different oxidation and filtration processes on the molecular size distribution of humic material. Water Science and Technology, 30(9), pp. 169-174
  18. Kennedy, M. D., Chun, H., Yangali, V., Heijman, B. G. J., and Schippers, J. C. (2005). Natural organic matter (NOM) fouling of ultrafiltration membranes: fractionation of NOM in surface water and characterisation by LC-OCD. Desalination, 178(1-3), 10 July 2005, pp. 73-83 https://doi.org/10.1016/j.desal.2005.02.004
  19. Kennedy, M. D., Kamanyi, J., Heijman, B. G. J., and Amy, G. (2008). Colloidal organic matter fouling of UF membranes: role of NOM composition & size. Desalination, 220(1-3), pp. 200-213 https://doi.org/10.1016/j.desal.2007.05.025
  20. Manahan, S. E. (1991). Environmental chemistry, 5th ed. Chelsea: Lewis Publishers, pp. 83-92
  21. Matilainen, A., Lindqvist, N., Korhonen, S., and Tuhkanen, T. (2002). Removal of NOM in the different stages of the water treatment process. Environment International, 28, pp. 457-465 https://doi.org/10.1016/S0160-4120(02)00071-5
  22. Meylan, S., Hammes, F., Traber, J., Salhi, E., Urs von Gunten, and Pronk, W. (2007). Permeability of low molecular weight organics through nanofiltration membranes. Water Research, 41(17), pp. 3968-3976 https://doi.org/10.1016/j.watres.2007.05.031
  23. Muller, M. B. and Frimmel, F. H. (2002). A new concept for the fractionation of DOM as a basis for its combined chemical and biological characterization. Water Research, 36(10), pp. 2643-2655 https://doi.org/10.1016/S0043-1354(01)00488-2
  24. Nissinen, T. K., Miettinen, I. T., Martikainen, P. J., and Vartiainen, T. (2001). Molecular size distribution of natural organic matter in raw and drinking waters. Chemosphere, 45, pp. 865-873 https://doi.org/10.1016/S0045-6535(01)00103-5
  25. Tan, L. and Amy, G. (1991). Comparing ozonation and membrane separation for colour removal and disinfection byproduct control. Journal of American Water Works Association, 83(5), pp. 74-79
  26. Wilkinson, K. J., Joz-Roland, A., and Buffle, J. (1997). Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters. Limnol. Oceanogr., 42(8), pp. 1714-1724 https://doi.org/10.4319/lo.1997.42.8.1714