DOI QR코드

DOI QR Code

Gene Microarray Analysis for Porcine Adipose Tissue: Comparison of Gene Expression between Chinese Xiang Pig and Large White

  • Guo, W. (State Key Laboratory for Agrobiotechnology, China Agricultural University) ;
  • Wang, S.H. (State Key Laboratory for Agrobiotechnology, China Agricultural University) ;
  • Cao, H.J. (College of Animal Science and Technology, China Agricultural University) ;
  • Xu, K. (State Key Laboratory for Agrobiotechnology, China Agricultural University) ;
  • Zhang, J. (State Key Laboratory for Agrobiotechnology, China Agricultural University) ;
  • Du, Z.L. (State Key Laboratory for Agrobiotechnology, China Agricultural University) ;
  • Lu, W. (State Key Laboratory for Agrobiotechnology, China Agricultural University) ;
  • Feng, J.D. (State Key Laboratory for Agrobiotechnology, China Agricultural University) ;
  • Li, N. (State Key Laboratory for Agrobiotechnology, China Agricultural University) ;
  • Wu, C.H. (College of Animal Science and Technology, China Agricultural University) ;
  • Zhang, L. (National Engineering Research Center for Beijing Biochip Technology)
  • Received : 2006.04.22
  • Accepted : 2006.11.01
  • Published : 2008.01.01

Abstract

We created a cDNA microarray representing approximately 3,500 pig genes for functional genomic studies. The array elements were selected from 6,494 cDNA clones identified in a large-scale expressed sequence tag (EST) project. These cDNA clones came from normalized and subtracted porcine adipose tissue cDNA libraries. Sequence similarity searches of the 3,426 ESTs represented on the array using BLASTN identified 2,790 (81.4%) as putative human orthologs, with the remainder consisting of "novel" genes or highly divergent orthologs. We used the gene microarray to profile transcripts expressed by adipose tissue of fatty Chinese Xiang pig (XP) and muscley Large White (LW). Microarray analysis of RNA extracted from adipose tissue of fatty XP and muscley LW identified 81 genes that were differently expressed two fold or more. Transcriptional differences of four of these genes, adipocyte fatty acid binding protein (aP2), stearyl-CoA desaturase (SCD), sterol regulatory element binding transcription factor 1 (SREBF1) and lipoprotein lipase (LPL) were confirmed using SYBR Green quantitative RT-PCR technology. Our results showed that high expression of SCD and SREBF1 may be one of the reasons that larger fat deposits are observed in the XP. In addition, our findings also illustrate the potential power of microarrays for understanding the molecular mechanisms of porcine development, disease resistance, nutrition, fertility and production traits.

Keywords

References

  1. Adams, M. D., J. M. Kelley, J. D. Gocayne, M. Dubnick, M. H. Polymeropoulos, H. Xiao, C. R. Merril, A. Wu, B. Olde, R. F. Moreno, A. R. KerLavage, W. R. McCombie and J. C. Venter. 1991. Complementary DNA sequencing: Expressed sequence Tags and human genome project. Sci. 252:1651-1656. https://doi.org/10.1126/science.2047873
  2. Band, M. R., J. H. Larson, M. Rebiez, C. A. Green, D. W. Heyen, J. Donovan, R. Windish, C. Steining, P. Mahyuddin, J. E. Womack and H. A. Lewin. 2000. An ordered comparative map of the cattle and human genomes. Genome Res. 10:1359-1367. https://doi.org/10.1101/gr.145900
  3. Brown, P. O. and D. Botstein. 1999. Exploring the new world of the genome with DNA microarrays. Nature Genetics. 21:33-37. https://doi.org/10.1038/4462
  4. Chappell, D. A., G. L. Fry, M. A. Waknitz, L. E. Muhonen, M. W. Pladet, P. H. Iverius and D. K. Strickland. 1993. Lipoprotein lipase induces catabolism of normal triglyceride-rich lipoproteins via the low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor in vitro. A process facilitated by cell-surface proteoglycans. J. Biol. Chem. 268:14168-14175.
  5. Cohen, P., M. Miyazaki, N. D. Socci, A. Hagge-Greenberg, W. Liedtke, A. A. Soukas, R. Sharma, L. C. Hudgins, J. M. Ntambi and J. M. Friedman. 2002. Role for Stearoyl-CoA Desaturase-1 in Leptin-Mediated Weight Loss. Sci. 297:240- 243. https://doi.org/10.1126/science.1071527
  6. Eisenberg, S. 1984. High density lipoprotein metabolism. J. Lipid Res. 25:1017-1058.
  7. Enoch, H. G., A. Catala and P. Strittmatter. 1976. Mechanism of rat liver microsomal stearoyl-CoA desaturase: studies of the substrate specificity, enzyme-substrate interactions and the function of lipid. J. Biol. Chem. 251:5095-5103.
  8. Ewing, B., L. Hillier, M. C. Wendl and P. Green. 1998. Base- Valling of automated sequencer traces using PHRED. I. accuracy assessment. Genome Res. 8:175-185. https://doi.org/10.1101/gr.8.3.175
  9. Foretz, M., C. Guichard, P. Ferre and F. Foufelle. 1999. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci USA. 96:12737- 12742. https://doi.org/10.1073/pnas.96.22.12737
  10. Glatz, J. F., M. M. York, D. P. Cistola and G. J. van der Vusse. 1993. Cytoplasmic fatty acid binding protein: significance for intracellular transport of fatty acids and putative role on signal transduction pathways. Prostaglandins Leukot Essent Fatty Acids. 48:33-41. https://doi.org/10.1016/0952-3278(93)90007-J
  11. Goldberg, I. J. 1996. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res. 37:693-707.
  12. Gomes, L. I., R. I. Silva, B. S. Stolf, E. B. Cristo, R. Hirata, F. A. Soares, L. F. Reis, E. J. Neves and A. F. Carvalho. 2003. Comparative analysis of amplified and nonamplified RNA for hybridization in cDNA microarray. Anal Biochem. 321(2):244- 251. https://doi.org/10.1016/S0003-2697(03)00466-4
  13. Jing, X., M. T. Nakamura, H. P. Cho and S. D. Clarke. 1999. Sterol regulatory element binding protein-1 expression is suppressed by dietary polyunsaturated fatty acid. J. Biol. Chem. 274:23577-23583. https://doi.org/10.1074/jbc.274.33.23577
  14. Kim, H. J., M. Miyazaki, W. C. Man and J. M. Ntambi. 2002. Sterol regulatory element-binding proteins (SREBPs) as regulators of lipid metabolism: polyunsaturated fatty acids oppose cholesterol-mediated induction of SREBP-1 maturation. Ann NY Acad Sci. 967:34-42. https://doi.org/10.1111/j.1749-6632.2002.tb04261.x
  15. Kim, H-J., M. Takahashi and O. Ezaki. 1999. Fish oil feeding decreases mature sterol regulatory element-binding protein 1 by down-regulation of SREBP-1c mRNA in mouse liver. A possible mechanism for down-regulation of lipogenic enzyme mRNAs. J. Biol. Chem. 274:25892-25898. https://doi.org/10.1074/jbc.274.36.25892
  16. Kim, J. B. and B. M. Spiegelman. 1996. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 10:1096-1107. https://doi.org/10.1101/gad.10.9.1096
  17. Kim, J. B., H. M. Wright, M. Wright and B. M. Spiegelman. 1998. ADD1/SREBP1 activates PPAR gamma through the production of endogenous ligand. Proc. Natl. Acad. Sci. USA. 95:4333-4337. https://doi.org/10.1073/pnas.95.8.4333
  18. Ly, D. H., D. J. Lockhart, R. A. Lerner and P. G. Schultz. 2000. Mitotic misregulation and human aging. Sci. 287:2486-2492. https://doi.org/10.1126/science.287.5462.2486
  19. Miserez, A. R., G. Q. Cao, L. C. Probst and H. H. Hobbs. 1997. Structure of the Human Gene Encoding Sterol Regulatory Element Binding Protein 2 (SREBF2). Genomics. 40(1):31-40. https://doi.org/10.1006/geno.1996.4525
  20. Ntambi, J. M. 1999. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J. Lipid Res. 40:1549-1558.
  21. Ntambi, J. M., M. Miyazaki, J. P. Stoehr, H. Lan, C. M. Kendziorski, B. S. Yandell, Y. Song, P. Cohen, J. M. Friedman and A. D. Attie. 2002. Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc. Natl. Acad. Sci. USA. 99(17):11482-11486. https://doi.org/10.1073/pnas.132384699
  22. Osborne, T. F. 2000. Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J. Biol. Chem. 275:32379-32382. https://doi.org/10.1074/jbc.R000017200
  23. Rump, R., C. Buhlmann, T. Borchers and F. Spener. 1996. Differentiation dependent expression of heart type fatty acidbinding protein in C2C12 muscle cells. Eur. J. Cell Biol. 69:135-142.
  24. Salinelli, S., J. Y. Lo, M. P. Mims, E. Zsigmond, L. C. Smith and L. Chan. 1996. Structure Function Relationship of Lipoprotein Lipase-mediated Enhancement of Very Low Density Lipoprotein Binding and Catabolism by the Low Density Lipoprotein Receptor. J. Biol. Chem. 271:21906-21913. https://doi.org/10.1074/jbc.271.36.21906
  25. Schena, M., D. Shalon, R. Heller, A. Chai, P. O. Brown and R. W. Davis. 1996. Parallel human genome analysis: Microarraybased expression monitoring of 1,000 genes. Proc. Natl. Acad. Sci. USA. 93:10614-10619. https://doi.org/10.1073/pnas.93.20.10614
  26. Schmittgen, T. D., B. A. Zakrajsek, A. G. Mills, V. Gorn, M. J. Singer and M. W. Reed. 2000. Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods. Anal Biochem. 285:194-204. https://doi.org/10.1006/abio.2000.4753
  27. Seo, T. and R. W. St Clair. 1997. Heparan sulfate proteoglycans mediate internalization and degradation of beta-VLDL and promote cholesterol accumulation by pigeon macrophages. J. Lipid Res. 38:765-779.
  28. Shalon, D., S. J. Smith and P. O. Brown. 1996. A DNA microarray system for analyzing complex DNA samples usiong two-color fluorescent probe hybridization. Genome Res. 6:639-645. https://doi.org/10.1101/gr.6.7.639
  29. Shimomura, I.,Y. Bashmakov, S. Ikemoto, J. D. Horton, M. S. Brown and J. L. Goldstein. 1999. Insulin selectively increases SREBP-1c mRNA in the livers of rats with streptozotocininduced diabetes. Proc. Natl. Acad. Sci. USA. 96:13656-13661. https://doi.org/10.1073/pnas.96.24.13656
  30. Shimomura, I., H. Shimano, B. S. Korn, Y. Bashmakov and J. D. Horton. 1998. Nuclear sterol regulatory element-binding proteins activate genes responsible for the entire program of unsaturated fatty acid biosynthesis in transgenic mouse liver. J. Biol. Chem. 273:35299-35306. https://doi.org/10.1074/jbc.273.52.35299
  31. Smith, L., P. Underhill, C. Pritchard, Z. Tymowska-Lalanne, S. Abdul-Hussein, H. Hilton, L. Winchester, D. Williams, T. Freeman, S. Webb and A. Greenfield. 2003. Single primer amplification (SPA) of cDNA for microarray expression analysis. Nucleic Acids Res. 31(3):e9. https://doi.org/10.1093/nar/gng009
  32. Spiegelman, B. M. 1998. PPAR-${\gamma}$: adipogenic regulator and thiazolidinedione receptor. Diabetes. 47:507-514. https://doi.org/10.2337/diabetes.47.4.507
  33. Tabor, D. E., J. B. Kim, B. M. Spiegelman and P. A. Edwards. 1998. Transcriptional activation of the stearoyl-CoA desaturase 2 gene by sterol regulatory element-binding protein/adipocyte determination and differentiation factor 1. J. Biol. Chem. 273(34):22052-22058. https://doi.org/10.1074/jbc.273.34.22052
  34. Tabor, D. E., J. B. Kim, B. M. Spiegelman and P. A. Edwards. 1999. Identification of conserved cis-elements and transcription factors required for sterol-regulated transcription of stearoyl-CoA desaturase 1 and 2. J. Biol. Chem. 274(29):20603-20610. https://doi.org/10.1074/jbc.274.29.20603
  35. Veerkamp, J. H. and H. T. van Moerkerk. 1993. Fatty acidbinding protein and its relation to fatty acid oxidation. Mol Cell Biochem. 123:101-106. https://doi.org/10.1007/BF01076480
  36. White, K. P., S. A. Rifkin, P. Hurban and D. S. Hogness. 1999. Microarray analysis of Drosophila development during metamorphosis. Sci. 286:2179-2184. https://doi.org/10.1126/science.286.5447.2179
  37. Xu, J. M., J. H. Teran-Garcia, Y. Park, M. T. Nakamura and S. D. Clarke. 2001. Polyunsaturated fatty acids suppress hepatic sterol regulatory element-binding protein expression by accelerating transcript decay. J. Biol. Chem. 276:9800-9807. https://doi.org/10.1074/jbc.M008973200
  38. Yang, Y. H., S. Dudoit, P. Luu, D. M. Lin, V. Peng, J. Ngai and T. P. Speed. 2002. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 30(4):e15. https://doi.org/10.1093/nar/30.4.e15
  39. Zhang, L., L. Ge, S. Parimoo, K. Stenn and S. M. Prouty. 1999. Human stearoyl-CoA desaturase: alternative transcripts generated from a single gene by usage of tandem polyadenylation sites. Biochem. J. 340:255-264. https://doi.org/10.1042/0264-6021:3400255

Cited by

  1. Distinctive Genes Determine Different Intramuscular Fat and Muscle Fiber Ratios of the longissimus dorsi Muscles in Jinhua and Landrace Pigs vol.8, pp.1, 2013, https://doi.org/10.1371/journal.pone.0053181
  2. Dietary L-Arginine Supplementation Affects the Skeletal Longissimus Muscle Proteome in Finishing Pigs vol.10, pp.1, 2015, https://doi.org/10.1371/journal.pone.0117294
  3. Study on the Lipolytic Function of GPR43 and Its Reduced Expression by DHA vol.22, pp.4, 2009, https://doi.org/10.5713/ajas.2009.80422
  4. cDNA Microarray Analysis of Differential Gene Expression in Boar Testes during the Prepubertal Period vol.22, pp.8, 2008, https://doi.org/10.5713/ajas.2009.90009
  5. Transcriptome analysis of miRNA and mRNA in the livers of pigs with highly diverged backfat thickness vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-53377-x
  6. Profiling and Functional Analysis of Long Noncoding RNAs and mRNAs during Porcine Skeletal Muscle Development vol.22, pp.2, 2008, https://doi.org/10.3390/ijms22020503