Association of A/T Rich Microsatellites with Responses to Artificial Selection for Larval Developmental Duration in the Silkworm Bombyx mori

  • Received : 2007.08.27
  • Accepted : 2008.01.10
  • Published : 2008.06.30

Abstract

Simple sequence repeats (SSRs) and interSSR (ISSR) marker systems were used in this study to reveal genetic changes induced by artificial selection for short/long larval duration in the tropical strain Nistari of the silkworm Bombyx mori. Artificial selection separated longer larval duration (LLD) ($29.428{\pm}0.723days$) and shorter larval duration (SLD) ($22.573{\pm}0.839days$) lines from a base, inbred population of Nistari (larval span of $23.143{\pm}0.35days$). SSR polymorphism was observed between the LLD and SLD lines at one microsatellite locus, Bmsat106 ($CA_7$) and at two loci of 1074 bp and 823 bp generated with the ISSR primer UBC873. Each of these loci was present only in the LLD line. The loci segregated in the third generation of selection and were fixed in opposite directions. In the $F_2$ generation of the $LLD{\times}SLD$ lines, the alleles of Bmsat106 and $UBC873_{1074bp}$ segregated in a 1:1 ratio and the loci were present only in the LLD individuals. $UBC873_{823bp}$ was homozygous. Single factor ANOVA showed a significant association between the segregating loci and longer larval duration. Together, the two alleles contributed to an 18% increase in larval duration. The nucleotide sequences of the $UBC873_{1074bp}$ and $UBC873_{823bp}$ loci had 67% A/T content and consisted of direct, reverse, complementary and palindromic repeats. The repeats appeared to be "nested" (59%) in larger repeats or as clustered elements adjacent to other repeats. Of 203 microsatellites identified, dinucleotides (67.8%) predominated and were rich in A/T and T/A motifs. The sequences of the $UBC873_{1074bp}$ and $UBC873_{823bp}$ loci showed similarity (E = 0.0) to contigs located in Scaffold 010774 and Scaffold 000139, respectively, of the B. mori genome. BLASTN analysis of the $UBC873_{1074bp}$ sequence showed significant homology of (nt.) 45-122 with upstream region of three exons from Bombyx. The complete sequence of this locus showed ~49% nucleotide conservation with transposon 412 of Drosophila melanogaster and the Ikirara insertions of Anopheles gambiae. The A + T richness and lack of coding potential of these small loci, and their absence in the SLD line, reflect the active process of genetic change associated with the switch to short larval duration as an adaptation to the tropics.

Keywords

References

  1. Abbot, P. (2001). Individual and population variation in invertebrates revealed by inter-simple sequence repeats (ISSRs). J. Insect Sci. 1, 8.
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  3. Ashley, C.T., Pendleton, C.G., Jennings, W.W., Sexana, A., and Glover, C.V.C. (1989). Isolation and sequencing of cDNA clones encoding Drosophila chromosomal protein D1. A repeating motif in proteins which recognize at DNA. J. Biol. Chem. 264, 8394-8401
  4. Azevedo, R.B.R., Keightley, P.D., Laurén-Maatta, C., Vassilieva, L.L., Lynch, M., and Leroi, A.M. (2002). Spontaneous mutational variation for body size in Caenorhabditis elegans. Genetics 162, 755-765
  5. Baker, R.E., and Rogers, K. (2005). Genetic and genomic analysis of the AT-rich centromere DNA element II of Saccharomyces cerevisiae. Genetics 171, 1463-1475 https://doi.org/10.1534/genetics.105.046458
  6. Churchill, M.E., and Suzuki, M. (1989). 'SPKK' motifs prefer to bind to DNA at A/T-rich sites. EMBO J. 8, 4189-4195
  7. Cortese, M.D., Norry, F.M., Piccinali, R., and Hasson, E. (2002). Direct and correlated responses to artificial selection on developmental time and wing length in Drosophila buzzatii. Evolution Int. J. Org. Evolution 56, 2541-2547 https://doi.org/10.1111/j.0014-3820.2002.tb00179.x
  8. Crow, J.F., and Kimura, M. (1970). An Introduction to Population Genetics Theory. (Minneapolis, USA: Burgess Publishing)
  9. Daborn, P.J., Yen, J.L., Bogwitz, M.R., Le Goff G., Feil, E., Jeffers, S., Tijet, N., Perry, T., Heckel, D., Batterham, P., et al. (2002). A single p450 allele associated with insecticide resistance in Drosophila. Science 297, 2253-2256 https://doi.org/10.1126/science.1074170
  10. Deka, J., Herter, P., Sprenger-Haubels, M., Koosch, S., Franz, D., Muller, K.-M., Kuhnen, C, Hofmann, I., and Muller, O. (1999). The APC protein binds to A/T rich DNA sequences. Oncogene 18, 5654-5661 https://doi.org/10.1038/sj.onc.1202944
  11. Deshpande, A.U., Apte, G.S., Bahulikar, R.A., Lagu, M.D., Kulkarni, B.G., Suresh, H.S., Singh, N.P., Rao, M.K., Gupta, V.S., Pant, A., et al. (2001). Genetic diversity across natural populations of three montane plant species from the Western Ghats, India revealed by inter simple sequence repeats. Mol. Ecol. 10, 2397-2408 https://doi.org/10.1046/j.0962-1083.2001.01379.x
  12. Ehtesham, N.Z., Bentur, J.S., and Bennett, J. (1995). Characterization of a DNA sequence that detects repetitive DNA elements in the Asian gall midge (Orseolia oryzae) genome: Potential use in DNA fingerprinting of biotypes. Gene 153, 179-183 https://doi.org/10.1016/0378-1119(94)00769-O
  13. Ellegren, H. (2004). Microsatellites: simple sequences with complex evolution. Nat. Rev. Genet. 5, 435-445 https://doi.org/10.1038/nrg1348
  14. Franchini, L.F., Ganko, E.W., and McDonald, J.F. (2004). Retrotransposon- gene associations are wide-spread among D. melanogaster populations. Mol. Biol. Evol. 21, 1323-1331 https://doi.org/10.1093/molbev/msh116
  15. Fu, H., Park, W., Yan, X., Zheng, Z., Shen, B., and Dooner, H.K. (2001). The highly recombinogenic bz locus lies in an unusually gene-rich region of the maize genome. Proc. Natl. Acad. Sci. USA 98, 8903-8908
  16. Gage, L.P. (1974). The Bombyx mori genome analysis by DNA reassociation kinetics. Chromosoma 45, 27-42
  17. Ganko, E.W., Greene, C.S., Lewis, J.A., Bhattacharjee, V., and McDonald, J.F. (2006). LTR retrotransposon-gene associations in Drosophila melanogaster. J. Mol. Evol. 62, 111-120 https://doi.org/10.1007/s00239-004-0312-4
  18. Goldsmith, M.R., Shimada, T., and Abe, H. (2005). The genetics and genomics of the silkworm, Bombyx mori. Ann. Rev. Entomol. 50, 71-100 https://doi.org/10.1146/annurev.ento.50.071803.130456
  19. Hill, S.R., Leung, S.S., Quercia, N.L., Vasiliauskas, D., Yu, J., Pasic, I., Leung, D., Tran, A., and Romans, P. (2001). Ikirara insertions reveal five new Anopheles gambiae transposable elements in islands of repetitious sequence. J. Mol. Evol. 52, 215-231 https://doi.org/10.1007/s002390010150
  20. Holland, J.B., Helland, S.J., Sharopova, N., and Rhyne, D.C. (2001). Polymorphism of PCR-based markers targeting exons, introns, promoter regions, and SSRs in maize and introns and repeat sequences in oat. Genome 44, 1065-1076 https://doi.org/10.1139/gen-44-6-1065
  21. Hong, C.P., Piao, Z.Y., Kang, T.W., Batley, J., Yang, T.J., Hur, Y.K., Bhak, J., Park, B.S., Edwards, D., and Lim, Y.P. (2007). Genomic distribution of simple sequence repeats in Brassica rapa. Mol. Cells 23, 349-356
  22. Ichimura, S., and Mita, K. (1992). Essential role of duplications of short motif sequences in the genomic evolution of Bombyx mori. J. Mol. Evol. 35, 123-130
  23. Jankowski, C., Naser, F., and Nag, D.K. (2000). Meiotic instability of CAG repeat tracts occurs by double-strand break repair in yeast. Proc. Natl. Acad. Sci. USA 97, 2134-2139
  24. Kaminker, J.S., Bergman, C.M., Kronmiller, B., Carlson, J., Svirskas, R., Patel, S., Frise, E., Wheeler, D.A., Lewis, S.E., Rubin, G.M., et al. (2002). The transposable elements of the Drosophila melanogaster euchromatin: a genomic perspective. Genome Biol. 3, Research0084
  25. Keightley, P.D. (1998). Genetic basis of response to 50 generations of selection on body weight in inbred mice. Genetics 148, 1931-1939
  26. Keightley, P.D., and Ohnishi, O. (1998). EMS-induced polygenic mutation rates for nine quantitative characters in Drosophila melanogaster. Genetics 148, 753-766
  27. Korpelainen, H., Kostamo, K., and Virtanen, V. (2007). Microsatellite marker identification using genome screening and restriction-ligation. Biotechniques 42, 479-486 https://doi.org/10.2144/000112415
  28. Kruglyak, S., Durrett, R.T., Schug, M.D., and Aquadro, C.F. (1998). Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc. Natl. Acad. Sci. USA 95, 10774-10778
  29. Kurtz, S., Choudhuri, J.V., Ohlebusch, E., Schleiermacher, C., Stoye, J., and Giegerich, R. (2001). REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633-4642 https://doi.org/10.1093/nar/29.22.4633
  30. Li, Y.-C., Korol, A.B., Fahima, T., Beiles, A., and Nevo, E. (2002). Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol. 11, 2453-2465 https://doi.org/10.1046/j.1365-294X.2002.01643.x
  31. Lyman, R.F., Lawrence, F., Nuzhdin, S.V., and Mackay, T.F.C. (1996). Effects of single P-element insertions on bristle number and viability in Drosophila melanogaster. Genetics 143, 277-292
  32. Mackay, T.F.C., Fry, J.D., Lyman, R.F., and Nuzhdin, S.V. (1994). Polygenic mutation in Drosophila melanogaster: estimates from response to selection in inbred strains. Genetics 136, 937-951
  33. Mackay, T.F.C., Lyman, R.F., and Lawrence, F. (2005). Polygenic mutation in Drosophila melanogaster: Mapping spontaneous mutations affecting sensory bristle number. Genetics 170, 1723-1735 https://doi.org/10.1534/genetics.104.032581
  34. Masidae, X., Bartolome, C., and Charlsworth, B. (2002). S-element insertions are associated with the evolution of the Hsp70 genes in Drosophila melanogaster. Curr. Biol. 12, 1686-1691 https://doi.org/10.1016/S0960-9822(02)01181-8
  35. McCollum, A.M., Ganko, E.W., Barrass, P.A., Rodriguez, J.M., and McDonald, J.F. (2002). Evidence for the adaptive significance of an LTR retrotransposon sequence in a Drosophila heterochromatic gene. BMC Evol. Biol. 2, 5 https://doi.org/10.1186/1471-2148-2-5
  36. Miao, X.X., Xub, S.J., Li, M.H., Li, M.W., Huang, J.H., Dai, F.Y., Marino, S.W., Mills, D.R., Zeng, P., Mita, K., et al. (2005). Simple sequence repeat-based consensus linkage map of Bombyx mori. Proc. Natl. Acad. Sci. USA 102, 16303-16308
  37. Mita, K., Kasahara, M., Sasaki, S., Nagayasu, Y., Yamada, T., Kanamori, H., Namiki, N., Kitagawa, M., Yamashita, H., Yasukochi, Y., et al. (2004). The genome sequence of silkworm, Bombyx mori. DNA Res. 11, 27-35 https://doi.org/10.1093/dnares/11.1.27
  38. Mitchell-Olds, T., and Schmitt, J. (2006). Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947-952 https://doi.org/10.1038/nature04878
  39. Mukherjee, N.G. (1912). Handbook of Sericulture, Government Book Depot, Calcutta, India
  40. Murakami, A., and Imai, H. (1974). Cytological evidence for holocentric chromosomes of the silkworms, Bombyx mori and B. mandarina (Bombycidae, Lepiodoptera). Chromosoma 47, 167-178 https://doi.org/10.1007/BF00331804
  41. Nagaraju, J., and Goldsmith, M.R. (2002). Silkworm genomics - progress and prospects. Curr. Sci. 83, 415-425
  42. Nagaraju, J., Klimenko, V., and Couble, P. (2000). The silkworm, Bombyx mori: A model genetic system. In Encyclopedia of Genetics, E. Reeves, ed. (London, UK: Fitzroy Dearborn), pp. 219-239
  43. Nagaraju, J., Kathirvel, M., Muthulakshmi, M., Subbiah, E.V., and Kumar, L.D. (2002). FISSR-PCR: a simple and sensitive assay for high throughput genotyping and genetic mapping. Mol. Cell. Probes 16, 67-72 https://doi.org/10.1006/mcpr.2001.0404
  44. Norris, D.E., Shurtleff, A.C., Toure, Y.T., and Lanzaro, G.C. (2001). Microsatellite DNA polymorphism and heterozygosity among field and laboratory populations of Anopheles gambiae s.s (Diptera: Culicidae). J. Med. Entomol. 38, 336-340 https://doi.org/10.1603/0022-2585-38.2.336
  45. Pasyukova, E.G., Nuzhdin, S.V., Morozova, T.V., and Mackay, T.F.C. (2004). Accumulation of transposable elements in the genome of Drosophila melanogaster is associated with a decrease in fitness. J. Heredity 95, 284-290 https://doi.org/10.1093/jhered/esh050
  46. Pradeep, A.R., Chatterjee, S.N., and Nair, C.V. (2005). Genetic differentiation induced by selection in an inbred population of the silkworm Bombyx mori revealed by RAPD and ISSR marker systems. J. Appl. Genet. 46, 291-298
  47. Pradeep, A.R., Anuradha, H. J., and Raje Urs, S. (2007). Molecular markers for biomass traits: association, interaction and genetic divergence in silkworm, Bombyx mori. Biomarker Insights 2, 197-217, available online
  48. Prasad, M.D., Muthulakshmi, M., Madhu, M., Archak, S., Mita, K., and Nagaraju, J. (2005). Survey and analysis of microsatellites in the silkworm, Bombyx mori: frequency, distribution, mutations, marker potential and their conservation in heterologous species. Genetics 169, 197-214 https://doi.org/10.1534/genetics.104.031005
  49. Reddy, K.D., Abraham, E.G., and Nagaraju, J. (1999a). Microsatellites of the silkworm, Bombyx mori: abundance, polymorphism and strain characterization. Genome 42, 1057-1065 https://doi.org/10.1139/gen-42-6-1057
  50. Reddy, K.D., Nagaraju, J., and Abraham, E.G. (1999b). Genetic characterization of silkworm Bombyx mori by simple sequence repeats (SSR) - anchored PCR. Heredity 83, 681-687 https://doi.org/10.1046/j.1365-2540.1999.00607.x
  51. Regelson, M., Eller, C.D., Horvath, S., and Marahrens, Y. (2006). A link between repetitive sequences and gene replication time. Cytogenet. Genome Res. 112, 184-193 https://doi.org/10.1159/000089869
  52. Rizzon, C., Martin, E., Marais, G., Duret, L., Segalat, L., and Biemont, C. (2003). Patterns of selection against transposons inferred from the distribution of Tc1, Tc3 and Tc5 insertions in the mut-7 line of the nematode Caenorhabditis elegans. Genetics 165, 1127-1135
  53. Robertson, H.M. (2002). Evolution of DNA transposons in eukaryotes. In Mobile DNA II, N.L. Craig, R. Craige, and A.M. Lambowitz, eds. (Washington DC, USA: ASM Press)
  54. Robertson, H.M., and Zumpano, K.L. (1997). Molecular evolution of an ancient mariner transposon, Hsmar I, in the human genome. Gene 205, 203-217 https://doi.org/10.1016/S0378-1119(97)00472-1
  55. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual (NY, USA: Cold Spring Harbor Laboratory Press)
  56. Scheiner, S.M. (2002). Selection experiments and the study of phenotypic plasticity. J. Evol. Biol. 15, 889-898 https://doi.org/10.1046/j.1420-9101.2002.00468.x
  57. Schlotterer, C. (2000). Evolutionary dynamics of microsatellite DNA. Chromosoma 109, 365-371 https://doi.org/10.1007/s004120000089
  58. Schnabel, R.D., Taylor, J.F., and Derr, J.N. (2003). Development of a linkage map and QTL scan for growth traits in North American bison. Cytogenet. Genome Res. 102, 59-64 https://doi.org/10.1159/000075726
  59. Sreenu, V.B., Kumar, P., Nagaraju, J., and Nagarajaram, H.A. (2007). Simple sequence repeats in mycobacterial genomes. J. Biosci. 32, 3-15 https://doi.org/10.1007/s12038-007-0002-7
  60. Strand, M., Prolla, T.A., Liskay, R.M., and Petes, T.D. (1993). Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch pair. Nature 365, 274-276 https://doi.org/10.1038/365274a0
  61. Suzuki, Y., Gage, L., and Brown, D.D. (1972). The genes for silk fibroin in Bombyx mori. J. Mol. Biol. 70, 637-649 https://doi.org/10.1016/0022-2836(72)90563-3
  62. Toth, G., Gaspari, Z., and Jurka, J. (2000). Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10, 967-981 https://doi.org/10.1101/gr.10.7.967
  63. Tu, Z. (2000). Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in the yellow fever mosquito, Aedes aegypti. Mol. Biol. Evol. 17, 1313-1325 https://doi.org/10.1093/oxfordjournals.molbev.a026415
  64. Tu, Z. (2001). Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc. Natl. Acad. Sci. USA 98, 1699-1704
  65. Udupa, S.M., Weigand, F., Saxena, M.C., and Kahl, G. (1998). Genotyping with RAPD and microsatellite markers resolves pathotype diversity in the ascochyta blight pathogen of chick pea. Theor. Appl. Genet. 97, 299-307 https://doi.org/10.1007/s001220050899
  66. Vijayan, K., Anuradha, H.J., Nair, C.V., Pradeep, A.R., Awasthi, A.K., Saratchandra, B., Rahman, S.A.S., Singh, K.C., Chakraborti, R., and Urs, S. Raje. (2006). Genetic diversity and differentiation among populations of the Indian eri silkworm, Samia cynthia ricini, revealed by ISSR markers. J. Insect Sci. 6, available online: insectscience.org/6.30
  67. Weber, J.L. (1990). Informativeness of human $(dC-dA)_n.\;(dG-dT)_n$ polymorphisms. Genomics 7, 524-530 https://doi.org/10.1016/0888-7543(90)90195-Z
  68. Witherspoon, D.J., Doak, T.G., Wiliams, K.R., Seegmiller, A., Serger, J., and Herrick, G. (1997). Selection on the protein - coding genes of the TBE I family of transposable elements in the ciliates Oxytricha fallax and O. trifallax. Mol. Biol. Evol. 14, 696-706 https://doi.org/10.1093/oxfordjournals.molbev.a025809
  69. Witten, J.T., Chen, C.T.L., and Cohen, B.A. (2007). Complex genetic changes in strains of Saccharomyces cerevisiae derived by selection in the laboratory. Genetics 117, 449-456
  70. Xia, Q., Zhou, Z., Lu, C., Cheng, D., Dai, F., Li, B., Zhao, P., Zha, X., Cheng, T., Chai, C., et al. (2004). A draft sequence for the genome of the domesticated silkworm (Bombyx mori). Science 306, 1937-1940 https://doi.org/10.1126/science.1102210
  71. Xiang, Z.H. (1995). Genetics and breeding of the silkworm. (Beijing, China: Chinese Agriculture Press), pp. 273-289
  72. Yoshida, T., Ohkumo, T., Ishibashi, S., and Yasuda, K. (2005). The 50-AT-rich half-site of Maf recognition element: a functional target for bZIP transcription factor Maf. Nucleic Acids Res. 33, 3465-3478 https://doi.org/10.1093/nar/gki653
  73. Zietkiewicz, E., Rafalski, A., and Labuda, D. (1994) Genome fingerprinting by simple sequence repeat (SSR) - anchored polymerase chain reaction amplification. Genomics 20, 176-183 https://doi.org/10.1006/geno.1994.1151
  74. zur Lage, P., Shrimpton, A.D., Flavell, A.J., Mackay, T.F.C., and Brown, A.J. (1997). Genetic and molecular analysis of smooth, a quantitative trait locus affecting bristle number in Drosophila melanogaster. Genetics 146, 607-618