Flavanone 3β-Hydroxylases from Rice: Key Enzymes for Favonol and Anthocyanin Biosynthesis

  • Kim, Jeong Ho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lee, Yoon Jung (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Kim, Bong Gyu (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Lim, Yoongho (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University) ;
  • Ahn, Joong-Hoon (Department of Bioscience and Biotechnology, Bio/Molecular Informatics Center, Konkuk University)
  • Received : 2007.10.30
  • Accepted : 2007.11.26
  • Published : 2008.04.30

Abstract

Flavanone $3{\beta}$-hydroxylases (F3H) are key enzymes in the synthesis of flavonol and anthocyanin. In this study, three F3H cDNAs from Oryza sativa (OsF3H-1 ~3) were cloned by RT-PCR and expressed in E. coli as gluthatione S-transferase (GST) fusion proteins. The purified recombinant OsF3Hs used flavanone, naringenin and eriodictyol as substrates. The reaction products with naringen and eriodictyol were determined by nuclear magnetic resonance spectroscopy to be dihydrokaempferol and taxifolin, respectively. OsF3H-1 had the highest enzymatic activity whereas the overall expression of OsF3H-2 was highest in all tissues except seeds. Flavanone $3{\beta}$-hydroxylase could be a useful target for flavonoid metabolic engineering in rice.

Keywords

Acknowledgement

Supported by : Rural Development Administration

References

  1. Baderschneider, B., and Winterhalter, P. (2001). Isolation and characterization of novel benzoates, cinnamates, flavonoids, and lignans from Riesling wine and screening for antioxidant activity. J. Agric. Food. Chem. 49, 2788-2798 https://doi.org/10.1021/jf010396d
  2. Britsch, L., and Grisebach, H. (1986). Purification and characterization of (2S)-flavanone 3-hydroxylase from Petunia hybrida. Eur. J. Biochem. 156, 569-577 https://doi.org/10.1111/j.1432-1033.1986.tb09616.x
  3. Britsch, L., Ruhnau-Brich, B., and Forkmann, G. (1992). Molecular cloning, sequence analysis, and in vitro expression of flavanone 3$\beta$-hydroxylase from Petunia hybrida. J. Biol. Chem. 267, 5380-5387
  4. Brugliera, F., Barri-Rewell, G., Holton, T.A., and Mason, J.G. (1999). Isolation and characterization of a flavonoid 3'- hydroxylase cDNA clone corresponding to the Ht1 locus of Petunia hybrida. Plant J. 19, 441-445 https://doi.org/10.1046/j.1365-313X.1999.00539.x
  5. Forkmann, G., Heller, W., and Grisebach, H. (1980). Anthocyanin biosynthesis in flowers of Matthiola incana. Z. Naturforsch Sect. C. Biosci. 35, 691-695
  6. Harborne, J.B., and Baxter, J. (1999). Handbook of natural flavonoids 2 vols, Wiley, Chichester
  7. Jin, Z., Grotewold, E., Qu, W., Fu, G., and Zhao, D. (2005). Cloning and characterization of a flavanone 3-hydroxylase gene from Saussurea medusa. DNA Seq. 16, 121-129 https://doi.org/10.1080/10425170500050742
  8. Kaltenbach, M., Schroder, G., Schmelzer, E., Lutz, V., and Schroder, J. (1999). Flavonoid hydroxylase from Catharanthus roseus: cDNA, heterologous expression, enzyme properties and cell-type specific expression in plants. Plant J. 19, 183-193 https://doi.org/10.1046/j.1365-313X.1999.00524.x
  9. Kim, B.G., Kim, S.Y., Song, H.S., Lee, C., Hur, H.-G., Kim, S.I., and Ahn, J.H. (2003). Cloning and expression of the isoflavone synthase gene (IFS-Tp) from Trifolium pratense. Mol. Cells 15, 301-306
  10. Kim, B.G., Kim, D.H., Hur, H.-G., Lim, J., Lim, Y., and Ahn, J.- H. (2005a). O-Methyltransferases from Arabidopsis thaliana. Agric. Chem. Biotech. 48, 113-119
  11. Kim, D.H., Kim, B.G., Lee, Y., Ryu, J.Y., Lim, Y., Hur, H.-G., and Ahn, J.-H. (2005b). Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli. J. Biotech. 138, 155-162
  12. Kim, B.G., Lee, Y., Hur, H.-G., Lim, Y., and Ahn, J.-H. (2006). Flavonoid 3'-O-methyltransferase from rice: cDNA cloning, characterization and functional expression. Phytochemistry 67, 387-394 https://doi.org/10.1016/j.phytochem.2005.11.022
  13. Ko, J.H., Kim, B.G., Hur, H.-G., Lim, Y., and Ahn, J.-H. (2006). Molecular cloning, expression and characterization of a glycosyltransferase from rice. Plant Cell Rep. 25, 141-146
  14. Latunde-Dada, A.O., Cabello-Hurtado, F., Czittrich, N., Didierjean, L., Schopfer, C., Hertkorn, N., Werck-Reichhart, D., and Ebel, J. (2001). Flavonoid 6-hydroxylase from soybean (Glycine max L.), a novel plant P-450 monooxygenase. J. Biol. Chem. 276, 1688-1695 https://doi.org/10.1074/jbc.M006277200
  15. Liu, C.-J., Blount, J.W., Steele, C.L., and Dixon, R.A. (2002). Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 14578-14583
  16. Lukacin, R., Groning, I., Schiltz, E., Britsch, L., and Matern, U. (2000a). Purification of recombinant flavanone 3$\beta$-hydroxylase from Petunia hybrida and assignment of the primary site of proteolytic degradation. Arch. Biochem. Biophys. 375, 364-370 https://doi.org/10.1006/abbi.1999.1676
  17. Lukacin, R., Groning, I., Pieper, U., and Matern, U. (2000b). Site-directed mutagenesis of the active site serine290 in flavanone 3$\beta$-hydroxylase from Petunia hybrida Eur. J. Biochem. 267, 853-860 https://doi.org/10.1046/j.1432-1327.2000.01064.x
  18. Lukacin, R., Urbanke, C., Groning, I., and Matern, U. (2000c). The monomeric polypeptide comprises the functional flavanone 3$\beta$-hydroxylase from Petunia hybrida. FEBS Lett. 467, 353-358 https://doi.org/10.1016/S0014-5793(00)01116-9
  19. Martens, S., and A. Mithofer, A. (2005). Flavones and flavone synthases. Phytochemistry, 66, 2399-2407 https://doi.org/10.1016/j.phytochem.2005.07.013
  20. Miyahisa, I., Kaneko, M., Funa, N., Kawasaki, H., Kojima, H., Ohnishi, Y., and Horinouchi, S. (2006). Efficient production of (2S)-flavones by Escherichia coli containing an artificial biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 68, 498-504 https://doi.org/10.1007/s00253-005-1916-3
  21. Nelson, D.R., Schuler, M.A., Paquette, S.A., Werck-Reichhart, D., and Bak, S. (2004). Comparative genomics of rice and Arabidopsis; analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol. 135, 756-772 https://doi.org/10.1104/pp.104.039826
  22. Pelt, J.L., Downes, W.A., Schoborg, R.V., and McIntosh, C.A. (2003). Flavanone 3-hydroxylase expression in Citrus paradise and Petunia hybrida seedlings. Phytochemistry 64, 435-444 https://doi.org/10.1016/S0031-9422(03)00341-8
  23. Prescott, A.G. (2003). A dilemma of dioxygenases (or where biochemistry and molecular biology fail to meet). J. Exp. Bot. 44, 849-861 https://doi.org/10.1093/jxb/44.5.849
  24. Prescott, A.G., and John P. (1996). Dioxygenases: molecular structure and role in plant metabolism. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 245-271 https://doi.org/10.1146/annurev.arplant.47.1.245
  25. Prescott, A.G., Stamford, N.P.J., Wheeler, G., and Firmin, J.L. (2002). In vitro properties of a recombinant flavonol synthase from Arabidopsis thaliana. Phytochemistry 60, 589-593 https://doi.org/10.1016/S0031-9422(02)00155-3
  26. Saito, K., Kobayashi, M., Gong, Z., Tanaka, Y., and Yamazaki, M. (1999). Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J. 17, 181-189 https://doi.org/10.1046/j.1365-313X.1999.00365.x
  27. Tahara, S. (2007). A journey of twenty-five years through the ecological biochemistry of flavonoids. Biosci. Biotechnol. Biochem. 71, 1387-1404 https://doi.org/10.1271/bbb.70028
  28. Turnbull, J., Nakajima, J., Welford, R.W.D., Yamazaki, M., Saito, K., and Schofield, C.J. (2004). Mechanistic studies on three 2-oxoglutarate-dependent oxygenases of flavonoid biosynthesis: Anthocyanidin synthase, flavonol snthase and flavanone 3$\beta$-hydroxylase. J. Biol. Chem. 279, 1206-1216 https://doi.org/10.1074/jbc.M309228200
  29. Winkel-Shirley, B. (2001). It takes a garden. How work on diverse plant species has contributed to an understanding of flavonoid metabolism. Plant Physiol. 128, 399-404
  30. Wiseman, E., Hartmann, U., Sagasser, M., Baumann, E., Palme, K., Hahlbrock, K., Saedler, H., and Weisshaar, B. (1998). Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotype. Proc. Natl. Acad. Sci. USA 95, 12432-12437