Effects of Starvation on Growth and Physiological Response in Cultured Catfish, Silurus asotus

기아에 따른 양식 메기, Silurus asotus의 성장 및 생리적 반응

  • Lee, Jeong Yeol (School of Marine Life Science, Kunsan National University) ;
  • Hur, Jun Wook (School of Marine Life Science, Kunsan National University) ;
  • Kim, Sun Gyu (School of Marine Life Science, Kunsan National University)
  • 이정열 (군산대학교 해양과학대학 해양생명과학부) ;
  • 허준욱 (군산대학교 해양과학대학 해양생명과학부) ;
  • 김선규 (군산대학교 해양과학대학 해양생명과학부)
  • Received : 2008.04.23
  • Accepted : 2008.06.24
  • Published : 2008.06.30

Abstract

An experiment was conducted for 80 days to determine the effect of feeding and starvation on the survival, growth, gonad-somatic index (GSI), hepato-somatic index (HSI), viscera index (LSI), the morphometric changes and hematological parameter in a cultured catfish, Silurus asotus. The survival and growth of the starved group was lower than those of the fed group during the experiment. Starvation resulted in retardation of growth, which provides examples of the reduction of final body weight, growth rate of body weight, specific growth rate and condition factor, whereas the fed group continued to grow and remained in good condition. Blood analysis (cortisol, glucose, aspartate aminotransferase, alanine aminotransferase, red blood cell and hemoglobin) showed significant differences between the fed and starved groups at the end of the experiment. These results suggest that all nutritional parameters used for starvation and feeding in this study appear to be a useful index of nutritional status in the cultured catfish.

메기, Silurus asotus에서 포식과 기아가 생존과 성장, 내장괴지수, 간중량지수, 생식소중량지수, 외형계측형질 변화 및 혈액 parameter들에 미치는 영향을 파악하기 위해 80일동안 기아 실험을 수행하였다. 기아군의 생존과 성장은 포식군의 생존과 성장에 비해 낮았다(P<0.05). 기아는 체중성장률, 일간성장률과 비만도에서 성장 정지 효과를 나타낸 반면, 포식군은 지속적인 성장을 보였다. 외형 계측형질 중복강 부위 횡단길이 관련에서 포식군은 실험 시작시와 차이를 보이지 않았으나, 기아군은 차이를 나타냈다 (P<0.05). 실험 기간 중 혈액성상(cortisol, glucose, AST, ALT, RBC 및 hemoglobin)에서 포식군과 기아군 사이에 유의한 차이를 보였다. 본 연구 결과, 포식과 기아 파악에 사용된 모든 parameter들은 본 종의 영양 상태 확인의 지표로 유용하며, 양식 메기의 성장 시기 평가 결정에 유용하리라 사료된다.

Keywords

Acknowledgement

Supported by : 군산대학교

References

  1. 김익수.최 윤.이충렬.이용주.김병직.김지현. 2005. 원색한 국어류대도감. 교학사, 615pp
  2. 박인석.임재현.허준욱. 2004. 한국의 메기과(Siluridae) 어류 계 측형질 특징. 한국어류학회지, 16: 1-6
  3. 박인석. 2004. 버들치, Rhynchocypris oxyphalus (Sauvage and Dabry) 기아시 일부 형질에서의 효과: 개관. 환경생물, 22: 351-368
  4. 박인석.이창규.임재현.김정혜. 1998. 조피볼락, Sebastes schlegeli 자어와 점농어, Lateolabrax sp. 자어의 기아시 성장 및 간세포 핵크기 변화. 한국양식학회지, 11: 345-352
  5. 박인석.임재현.정창화.노재구.김윤해.이용호. 2002. 기아시 버들치 Rhynchocypris oxycephalus (Sauvage and Dabry)의 일부 영양 조건에서의 효과. 2. 체 절단면 계측형질의 변 화. 한국어류학회지, 14: 11-18
  6. 우선랑. 2005. 넙치, Paralichthys olivaceus (Temminck et Schlegel) 기아시의 영향. 한국해양대학교 석사학위논문, 한국해양대학교, 76pp
  7. 이창규.박인석.허성범. 1998. 기아시 붉바리 자어의 간세포 핵 변화. 한국양식학회지, 11: 11-17
  8. 정민호.윤정문.이태희. 2003. 맥문동이 기아 stress로 유발된 생쥐의 혈중 corticosterone 농도 변화에 미치는 영향. 대한본초학회지, 18: 279-287
  9. Bilinski, E. and L.J. Gardner. 1968. Effect of starvation of free fatty acid level in blood plasma and muscular tissues of rainbow trout (Salmo gairdneri). J. Fish. Res. Bd Can., 25: 1555-1560 https://doi.org/10.1139/f68-140
  10. Blom, S., T.B. Andersson and L. Forlin. 2000. Effects of food deprivation and handling stress on head kidney 17a-hydroxyprogesterone 21-hydroxylase activity, plasma cortisol and the activities of liver detoxification enzymes in rainbow trout. Aquat. Toxicol., 48: 265-274 https://doi.org/10.1016/S0166-445X(99)00031-4
  11. Chavin, W. and J.E. Young. 1970. Factors in the determination of normal serum glucose levels of goldfish, Carassius auratus L. Comp. Biochem. Physiol., 33: 629-653 https://doi.org/10.1016/0010-406X(70)90376-2
  12. Currens, K.P., C.S. Sharpe, R. Hjort, C.B. Schreek and H.W. Li. 1989. Effect of different feeding regimes on the morphometrics of chinook salmon (Oncorhynychus tshawytscha) and rainbow trout (O. mykiss). Copeia (1989): 689-695
  13. Davis, K.B. and N.C. Parker. 1990. Physiological stress in striped bass: effect of acclimation temperature. Aquculture, 91: 349-358 https://doi.org/10.1016/0044-8486(90)90199-W
  14. Ehrlich, K.F., J.H.S. Blaxter and R. Pemberton. 1976. Morphological and historical changes during the growth and starvation of herring and plaice larvae. Mar. Biol., 35: 105-118 https://doi.org/10.1007/BF00390932
  15. Guyton, A.C. 1991. Texbook of Medical Physiology. 8th, Wonsiewiez MJ and Hallowell R (eds.), WB Saunders Company, Philadelphia, 782pp
  16. Harris, J. and D.J. Bird. 2000. Modulation of the fish immune system by hormones. Vet. Immunol. Immunopathol., 77: 163-176 https://doi.org/10.1016/S0165-2427(00)00235-X
  17. Ince, B.W. and A. Thorpe. 1976. The effects of starvation and forcefeeding on the metabolism of the northern pick, Esox lucius L. J. Fish Biol., 8: 79-88 https://doi.org/10.1111/j.1095-8649.1976.tb03909.x
  18. Karma, S.K. 1966. Effects of starvation and refeeding on some liver and blood constituents of Atlantic cod (Gadus morhua L.). J. Fish. Res. Bd Can., 23: 975-982 https://doi.org/10.1139/f66-090
  19. Kawatsu, H. 1966. Studies on the sanaemia of fish. 1. Anaemia of rainbow trout caused by starvation. Bull. Freshwater Fish. Res. Lab. Tokyo., 15: 167-173
  20. Larsson, A. and K. Lewander. 1973. Metabolic effects of starvation in the eel, Anguilla anguilla L. Comp. Biochem. Physiol., 44A: 367-374
  21. Love, R.M. 1970. Depletion. in The Chemical Biology of Fishes with a Key to the Chemical Literature, Academic Press, London, pp. 222-257
  22. Moon, T.W. 1983. Metabolic reserves and enzyme activities with food deprivation in immature American eels, Anguilla rostrata (Lesueur). Can. J. Zool., 61: 802-811 https://doi.org/10.1139/z83-106
  23. Park, I.-S., J.M. Im, D.K. Ryu, Y.K. Nam and D.S. Kim, 2001. Effect of starvation on morphometric changes in Rhynchocypris oxycephalus (Sauvage and Dabry). J. Appl. Ichthyol., 17: 277-281 https://doi.org/10.1046/j.1439-0426.2001.00298.x
  24. Pickering, A.D. and T.G. Pottinger. 1989. Stress responses and disease resistance in salmonid fish: Effects of chronic elevtion of plasma cortisol. Fish Physiol. Biochem., 7: 253-258 https://doi.org/10.1007/BF00004714
  25. Rios, F.S., E.T. Oba, M.N. Fernandes, A.L. Kalinin and F.T. Rantin. 2005. Erythrocyte senescence and haematological changes induced by starvation in the neotropical fish traira, Hoplias malabaricus (Characiformes, Erythrinidae). Comp. Biochem. Physiol., 140: 281-287 https://doi.org/10.1016/j.cbpb.2004.12.006
  26. Pastoureaud, A. 1991. Influence of starvation at low tern eratwes on utilization of energy reserves, appetite recovery and growth character in sea bass, Dicentrarchus labmx. Aquaculture, 99: 167-178 https://doi.org/10.1016/0044-8486(91)90296-J
  27. Selye, H. 1958. The stress of life. Longmans Green and Co, Toronto, pp. 1-50
  28. Specker, C.B., C.S. Bradford, M.S. Fitzpatrick and R. Patino. 1989. Regulation of the interrenal of fishes: Non-classical control mechanism. Fish Physiol. Biochem., 7: 259-265 https://doi.org/10.1007/BF00004715
  29. Sumpter, J.P., P.Y. Le Bail, A.D. Pickering, T.G. Pottinger and J.F. Carragher. 1991. The Effect of starvation on growth and plasma growth hormone concentrations of rainbow trout, Oncorhynchus mykiss. Gen. Comp. Endocr., 83: 94-102 https://doi.org/10.1016/0016-6480(91)90109-J
  30. Tashima, L. and C.F. Cahill. 1968. Effects of insulin in the toadifish, Opsanus tau. Gen. Comp. Endocrinol., 11: 262-271 https://doi.org/10.1016/0016-6480(68)90081-6
  31. Theilacker, G.H. 1987. Effect of starvation in the histological and morphological characteristics of jack mackerel, Trachurus symmetricus larvae, Fish. Bull. U.S., 76: 403-414
  32. Weatherley, A.H. and H.S. Gill. 1981. Recovery growth of following periods or resticted rations and starvation in rainbow trout, Salmo gairdneri Richardson. J. Fish Biol., 18: 195-208 https://doi.org/10.1111/j.1095-8649.1981.tb02814.x
  33. Weatherley, A.H. and H.S. Gill. 1987. The biology of fish growth. 4. Protein, lipid and caloric contents. Academic press, London, pp. 139-146