Physiological Responses of the Five Deciduous Hardwood Seedlings Growing Under Different Shade Treatments

광도 저하에 대한 5개 활엽수의 생리적 응답 반응

  • Cho, Min Seok (Department of Environment and Forest Resources, Chungnam National University) ;
  • Kwon, Ki Won (Department of Environment and Forest Resources, Chungnam National University) ;
  • Kim, Gil Nam (Department of Environment and Forest Resources, Chungnam National University) ;
  • Kim, Pan Gi (Department of Forest Resources and Environment, Kyungpook National University)
  • 조민석 (충남대학교 산림자원학과) ;
  • 권기원 (충남대학교 산림자원학과) ;
  • 김길남 (충남대학교 산림자원학과) ;
  • 김판기 (경북대학교 산림환경자원학과)
  • Received : 2008.11.06
  • Accepted : 2008.11.24
  • Published : 2008.12.30

Abstract

This present study was conducted to investigate photosynthetic responses and chlorophyll fluorescence performances of Cornus controversa, Fraxinus rhynchophylla, Betula schmidtii, Prunus leveilleana, and Acer mono seedlings growing under four different light intensity regimes (full sun, and 65~72%, 29~40%, 7~12% of full sun). As result, Cornus controversa, Fraxinus rhynchophylla, and Betula schmidtii showed outstanding photosynthetic capacities in full sun and showed low shade tolerance. Prunus leveilleana showed good photosynthetic capacity in three treatment levels except for 7~12% of full sun and showed common shade tolerance. While, Acer mono showed good photosynthetic capacity and chlorophyll fluorescence in 29~40% of full sun. Acer mono showed the highest shade tolerance compared to the other four species.

본 연구에서는 층층나무, 물푸레나무, 박달나무, 개벚나무, 고로쇠나무를 대상으로 차광처리를 통해 4가지 수준(상대 차광률; 전광처리구, 전광대비 65~72%, 29~40%, 7~12%)으로 광도 조건을 달리하여 광합성 특성을 조사하였다. 그 결과, 층층나무, 물푸레나무 및 박달나무는 차광처리에 의하여 광합성 능력과 엽록소 형광이 저하하여, 내음성 수준이 낮음을 시사하였다. 개벚나무는 조사 시기별 차이는 있었으나, 강피음 처리구를 제외한 나머지 세 처리구에서 좋은 광합성 능력을 나타내, 보통 수준의 내음성을 보였다. 한편 고로쇠나무는 전광대비 29~40% 처리구에서 가장 높은 광합성 능력과 엽록소 형광을 나타내, 내음성 수준이 공시수종 중에 가장 높음을 시사하였다.

Keywords

Acknowledgement

Supported by : 산림청

References

  1. 권기원, 김선아, 이돈구. 1996. 인공 피음 처리 하에서 자라는 몇 가지 침엽수 및 활엽수 잎의 엽록소 함량에 미치는 광도 효과. 충남대학교 환경문제연구소 논문집 14: 42-49.
  2. 김영환. 1999. 숲틈에서 갱신 초기 단계 소나무의 생장특성과 수관 형태. 서울대학교 대학원 박사학위논문. pp. 100.
  3. 김판기, 이용섭, 정동준, 우수영, 성주한, 이은주. 2001. 광도가 내음성이 서로 다른 3수종의 광합성 생리에 미치는 영향. 한국임학회지 90(4): 476-487.
  4. 김판기, 이은주. 2001a. 광합성의 생리상태(1) -광도와 엽육내 $CO_2$분압 변화에 대한 광합성 반응 -. 한국농림기상학회지 3(2): 126-133.
  5. 김판기, 이은주. 2001b. 광합성의 생리상태(2) -환경변화에 대한 광합성의 적응반응 -. 한국농림기상학회지 3(3): 171-176.
  6. 시그마 플롯. 2000. 필사이언스. pp. 136.
  7. 우수영, 이돈구. 1992. 광도와 양료 조건을 달리 했을 때 상수리나무묘목의 광합성과 Ribulose-Diphosphate Carboxylase의 활성에 미치는 영향. 한국임학회지 81(1): 11-20.
  8. 이철호, 신창호, 김규식, 최명석. 2006. 광강도에 따른 음나무 유묘의 생장 및 광합성 특성. 한국약용작물학회지 14(4): 244-249.
  9. 임종환, 우수영, 권미정, 천정화, 신준환. 2006. 한라산구상나무 건전개체와 쇠약개체의 온도변화에 따른 광합성능력과 수분이용효율. 한국임학회지 95(6): 705-710.
  10. 제선미, 손석규, 우수영, 변광옥, 김찬수. 2006. 다른 광도에서 생육한 죽절초의 광합성 기구, 엽록소 함량차이. 농림기상학회지 8(2): 54-60.
  11. 최용봉, 김종희. 1995. 인공산성우의 처리에 따른 소나무와 곰솔 침엽의 엽록소 형광변화. 한국임학회지 84(1): 97-102.
  12. 최정호. 2001. 인공피음이 주요수종의 생장 및 수분특성과 광합성에 미치는 영향. 충남대학교 대학원 박사학위논문. pp. 152.
  13. Barker, M.G., M.C. Press, and N.D. Brown. 1997. Photosynthetic characteristics of dipterocarp seedlings in three tropical rain forest light environments: a basis for niche partitioning. Oecologia 112: 453-463. https://doi.org/10.1007/s004420050332
  14. Choi, J.H., K.W. Kwon, and J.C. Chung. 2006. Changes in chlorophyll contents and photosynthetic characteristics of hardwood species according to artificial shade treatment. J. Korean For. Soc. 95(5): 614-620.
  15. Demmig, B. and O. Björkman. 1987. Comparison of the effect of excessive light on chlorophyll fluorescence (77K) and photon yield of O2 evolution in leaves of higher plants. Planta 171: 171-184. https://doi.org/10.1007/BF00391092
  16. Einhorn, K.S., E. Rosenqvist, and J.W. Leverenz. 2004. Photoinhibition in seedlings of Fraxinus and Fagus under natural light conditions: Implications for forest regeneration?. Oecologia 140(2): 241-251. https://doi.org/10.1007/s00442-004-1591-6
  17. Inada, K. 1980. Spectral absorption property of pigments in living leaves and its contribution to photosynthesis. Jan. J. Crop Science 49: 286-294. https://doi.org/10.1626/jcs.49.286
  18. Kimmins, J.P. 1997. Forest Ecology (2nd ed.). Prentice Hall. New Jersey. pp. 596.
  19. Kitao, M., T.T. Lei, T. Koike, H. Tobita, and Y. Maruyama. 2000. Susceptibility to photoinhibition of three deciduous broadleaf tree species with different successional traits raised under various light regimes. Plant, Cell and Environment 23: 81-89. https://doi.org/10.1046/j.1365-3040.2000.00528.x
  20. Kitao, M., H. Utsugi, S. Kuramoto, R. Tabuchi, K. Fujimoto, and S. Lihpai. 2003. Light-dependent photosynthetic characteristics indicated by chlorophyll fluorescence in five mangrove species native to Pohnpei Island, Micronesia. Physiol. Plantarum 117: 376-382. https://doi.org/10.1034/j.1399-3054.2003.00042.x
  21. Krause. G.H. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis; The basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 313-349. https://doi.org/10.1146/annurev.pp.42.060191.001525
  22. Laisk, A., H. Eichelmann, V. Oja, B. Rasulov, E. Padu, L. Bichele, H. Pettai, and O. Kull. 2005. Adjustment of leaf photosynthesis to shade in a natural canopy: rate parameters. Plant, Cell and Environment 28: 375-388. https://doi.org/10.1111/j.1365-3040.2004.01274.x
  23. Lu, Q., X. Wen, C. Lu, Q. Zhang, and T. Kuang. 2003. Photoinhibition and photoprotection in senescent leaves of field-grown wheat plants. Plant Physiol. and Biochem. 41: 749-754. https://doi.org/10.1016/S0981-9428(03)00098-6
  24. Smillie, R.M. and S.E. Hetherington. 1983. Stress tolerance and stress induced injury in crop plants measured by chlorophyll fluorescence in vivo. Chilling, freezing, ice cover, heat and high light. Plant Physiol. 72: 1043-1050. https://doi.org/10.1104/pp.72.4.1043
  25. Smith, H. 1995. Physiological and ecological function within the phytochrome family. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 289-315. https://doi.org/10.1146/annurev.pp.46.060195.001445
  26. Terashima, I. and K. Hikosaka. 1995. Comparative ecophysiology of leaf and canopy photosynthesis. Plant, Cell and Environment 18(10): 1111-1128. https://doi.org/10.1111/j.1365-3040.1995.tb00623.x
  27. Terashima, I. and J.R. Evans. 1988. Effects of light and nitrogen nutrition on the organization of the photosynthetic apparatus in spinach. Plant and Cell Physiol. 29(1): 143-155.
  28. Valladares, F., M.T. Allen, and R.W. Pearcy. 1997. Photosynthetic responses to dynamic light under field conditions in six tropical rainforest shrubs occurring along a light gradient. Oecologia 111: 505-514 https://doi.org/10.1007/s004420050264