Characteristics of Heat Transfer in Three-Phase Swirling Fluidized Beds

삼상 Swirling 유동층에서 열전달 특성

  • Son, Sung-Mo (School of Chemical Engineering, Chungnam National University) ;
  • Shin, Ik-Sang (School of Chemical Engineering, Chungnam National University) ;
  • Kang, Yong (School of Chemical Engineering, Chungnam National University) ;
  • Cho, Yong-Jun (Nuclear Fuel Cycle R&D Group, Korea Atomic Energy Research Institute) ;
  • Yang, Hee-Chun (Nuclear Fuel Cycle R&D Group, Korea Atomic Energy Research Institute)
  • Received : 2007.12.13
  • Accepted : 2007.12.27
  • Published : 2008.02.28

Abstract

Characteristics of heat transfer were investigated in a three-phase swirling fluidized bed whose diameter was 0.102 m and 2.5 m in height. Effects of gas and liquid velocities, particle size and liquid swirling ratio ($R_S$) on the immersed heater-to-bed overall heat transfer coefficient were examined. The heat transfer characteristics between the immersed heater and the bed was well analyzed by means of phase space portraits and Kolmogorov entropy(K) of the time series of temperature difference fluctuations. The phase space portraits of temperature difference fluctuations became stable and periodic and the value of Kolmogorov entropy tended to decrease with increasing the value of liquid swirling ratio from 0.1 to 0.4. The value of Kolmogorov entropy exhibited its minimum with increasing liquid swirling ratio. The value of overall heat transfer coefficient (h) showed its maximum with the variation of liquid velocity, bed porosity or liquid swirling ratio, but it increased with increasing gas velocity and particle size. The value of K exhibited its maximum at the liquid velocity at which the h value attained its maximum. The overall heat transfer coefficient and Kolmogorov entropy were well correlated in terms of dimensionless groups and operating variables.

직경이 0.102 m이고 높이가 2.5 m인 삼상 swirling(나선) 흐름 유동층에서 열전달 특성을 고찰하였다. 기체유속($U_G$), 액체유속($U_L$), 유동 입자의 크기($d_p$), 그리고 연속상인 액체의 나선 유도 흐름 액체량의 비($R_S$)가 유동층 내부 열원과 유동층간의 총괄 열전달 계수에 미치는 영향을 검토하였다. 유동층 내부 열원과 유동층간의 열전달 특성은 열원 표면과 유동층간의 온도차 요동 자료의 위상공간 투영과 Kolmogorov 엔트로피 해석으로 고찰할 수 있었으며, 나선 유도 흐름 액체량의 비($R_S$)가 0.1에서 0.4까지 증가할수록 온도차 요동 자료의 위상 공간 투영은 점점 안정되고 규칙성이 증대되는 상태를 나타내고, Kolmogorov 엔트로피 값은 감소하는 경향을 나타내었다. 열원 표면과 유동층간의 온도차 요동 자료의 Kolmogorov 엔트로피 값은 나선 유도 흐름 액체량이 증가함에 따라 최소값을 나타내었다. 열원과 유동층간의 총괄 열전달 계수는 기체 유속 및 유도입자의 크기가 증가함에 따라서 증가하였으나, 액체유속, 층공극률, 나선 유도 흐름 액체량의 비가 증가함에 따라서 최대값을 나타내었다. 내부 열원과 유동층간의 총괄 열전달 계수가 최대값을 나타낼 때의 액체의 유속 조건에서 온도차 요동자료의 Kolmogorov 엔트로피의 값도 최대값을 나타내었다. 삼상 나선흐름 유동층에서 열전달 계수와 Kolmogorov 엔트로피를 실험 변수 및 무차원군의 상관식으로 나타낼 수 있었다.

Keywords

Acknowledgement

Supported by : 한국원자력연구원

References

  1. Fan, L. S., Gas-Liquid-Solid Fluidization Engineering, Butterworths, Stonehair, MA.(1989).
  2. Kim, S. D. and Kang, Y., "Heat and Mass Transfer in Threephase Fluidized Beds; An Overview," Chem. Eng. Sci., 52(21- 22), 3639-3660(1997). https://doi.org/10.1016/S0009-2509(97)00269-8
  3. Kang, Y., Cho, Y. J., Lee, C. G., Song, P. S. and Kim, S. D., "Radial Liquid Dispersion and Bubble Distribution in Threephase Circulating Fluidized Beds," Can. J. Chem. Eng., 81(6), 1130-1138(2003). https://doi.org/10.1002/cjce.5450810602
  4. Lefebvre, S., Guy C. and Chaouki, J., "Solid Phase Hydrodynamics of Three-phase Fluidized Beds-A Convective/dispersive Mixing Model," Chem. Eng. J. 133(1-3), 85-95(2007). https://doi.org/10.1016/j.cej.2007.02.004
  5. Kim, S. D. and Kang, Y., "Hydrodynamic, Heat and Mass Transfer in Inverse and Circulating Three-phase Fluidized-bed Reactors for Waste Water Treatment," Studies in Surface Science and Catalyst, 159, 103-108(2006). https://doi.org/10.1016/S0167-2991(06)81545-4
  6. Son, S. M., Shin, H. J., Kang, S. H., Kang, Y. and Kim, S. D., "Characteristic of Phase Holdups and Pressure Fluctuations in a Three-Phase Swirling Fluidized Bed," J. Korean Ind. Eng. Chem. 15(6), 652-658(2004).
  7. Son, S. M., Kang, S. H., Kang, Y. and Kim, S. D., "Characteristics of Particle Flow and Heat Transfer in Liquid-Particle Swirling Fluicized Beds," Korean Chem. Eng. Res. 44(5), 505-512(2006).
  8. Lin, T. J. and Chiu, H. T., "Effects of Macroscopic Hydrodynamics on Heat Transfer in a Three-phase Fluidized Bed," Catalysis Today, 79-80, 159-167(2003). https://doi.org/10.1016/S0920-5861(03)00021-X
  9. Shin, K. S., Song, P. S., Lee, C. G. Kang, S. H., Kang, Y., Kim, S. D. and Kim, S. J., "Heat Transfer Coefficient in Viscous Liquid- Solid Circulation Fluidized Beds," AIChE J., 51(2), 671-677 (2005). https://doi.org/10.1002/aic.10291
  10. Van der Bleek, C. M. and Shouten, J. C., "Deterministic Chaos New tool in Fluidized Bed Design and Operation," Chem. Eng, J., 53(1), 75-87(1993).
  11. Cho, Y. J., Song, P. S., Kim, S. H., Kang, Y. and Kim, S. D., "Stochastic Analysis of Gas-liquid-solid Flow in Three-phase Circulating Fluidized Beds," J. Chem. Eng. Japan., 34(2), 254-261 (2001). https://doi.org/10.1252/jcej.34.254
  12. Grassberger, P. and Procaccia, I., "Estimation of the Kolmogorov Entropy from a Chaotic Signal," Physical review A, 28(4), 2591-2593(1983). https://doi.org/10.1103/PhysRevA.28.2591