Embedded rac-Et[Ind]2ZrCl2 메탈로센 촉매를 이용한 Ethylene/α-olefin 공중합특성

Copolymerization of Ethylene and α-olefins with Embedded rac-Et[Ind]2ZrCl2 Catalyst

  • 신동민 (울산대학교 생명화학공학부) ;
  • 정진석 (울산대학교 생명화학공학부)
  • Shin, Dong Min (School of Chemical Engineering and Bioengineering, University of Ulsan) ;
  • Chung, Jin Suk (School of Chemical Engineering and Bioengineering, University of Ulsan)
  • 투고 : 2007.09.28
  • 심사 : 2007.10.05
  • 발행 : 2008.02.28

초록

일반적인 균일계 촉매의 담지 방식 대신 스티렌을 이용하여 촉매를 embedding 시키는 간단한 방법으로 균일계 촉매를 불균일화하여 에틸렌과 알파올레핀의 공중합을 실험하였다. 미량의 스티렌을 $rac-Et[Ind]_2ZrCl_2$ 촉매를 이용하여 중합시켜 embedded $rac-Et[Ind]_2ZrCl_2$ 촉매(이하 embedded 촉매)를 제조하였으며 이를 이용하여 embedding 시키지 않은 homogeneous $rac-Et[Ind]_2ZrCl_2$ 촉매(이하 homogeneous 촉매)를 사용하여 중합한 결과와 비교해 보았다. Embedded 촉매시스템을 사용하여 중합하는 경우, 공단량체의 종류에 상관없이 모든 공단량체 농도에서 촉매의 공중합 활성이 homogeneous 촉매보다 우수하였으며 embedding 과정이 균일계 메탈로센 촉매 활성점의 특성에 영향을 미치지 않았다. 또한 각 촉매시스템으로부터 생성된 고분자의 $T_m$과 NMR 분석 결과로 볼 때, embedded 촉매의 공단량체 삽입 능력은 homogeneous 촉매와 비슷하거나 조금 나은 수준의 결과를 보였으며, embedded 촉매로 중합한 공중합체는 겉보기밀도와 morphology가 우수하여, 스티렌을 이용한 촉매 embedding 방법이 담지 촉매를 이용하여 중합하는 효과를 보일 수 있음을 관찰할 수 있었다.

Copolymerization of ethylene and ${\alpha}$-olefin using $rac-Et[Ind]_2ZrCl_2/MAO$ catalyst embedded onto polysty-rene was examined. The embedded catalyst was prepared by polymerizing a small amount of styrene with $rac-Et[Ind]_2ZrCl_2$. The catalytic activities of the embedded catalyst were higher than those of the homogeneous catalystregardless of comonomer type and the characteristic of the active sites of the embedded catalyst was not affected duringthe embedding process. Based on the DSC and NMR analyses of the produced copolymers, it was thought that theembedded catalyst had similar or slightly better comonomer incorporation ability. Furthermore, the copolymers produced by the embedded catalyst had higher bulk densities and better particle morphology than those by the homogeneous catalyst.

키워드

과제정보

연구 과제 주관 기관 : 한국학술진흥재단

참고문헌

  1. Kaminsky, W., "Polymerization Catalysis," Catal. Today, 62(1), 23-34(2000). https://doi.org/10.1016/S0920-5861(00)00406-5
  2. Kaminsky, W. and Laban, A., "Metallocene Catalysis," Appl. Catal. A: Gen., 222(1), 47-61(2001). https://doi.org/10.1016/S0926-860X(01)00829-8
  3. Kaminsky, W., Hopf, A. and Arndt-Rosenau, M., "Efficient and Tailored Polymerization of Olefins and Styrene by Metallocene Catalysts," Macromol. Symp. 201(1), 301-307(2003).
  4. Alt, H. G., "From the Lab Bench to the Plant: How to Commercialize a Metallocene Catalyst?," Macromol Symp. 173(1), 65-75 (2001).
  5. Park, H. W., La, K. W., Chung, J. S. and Song, I. K., "Effect of Cocatalyst on the Chemical Composition Distribution and Microstructure of Ethylene-hexene Copolymer Produced by a Metallocene/ Ziegler-Natta Hybrid Catalyst," Korean J. Chem. Eng., 24(3), 403-407(2007). https://doi.org/10.1007/s11814-007-0069-8
  6. Chung, J. S., Woo, B. G. and Choi, K.Y., "Syndiospecific Polymerization of Styrene with Embedded Metallocene Catalysts," Macromol. Symp., 206(1), 375-382(2004).
  7. Chu, K. J., Shan, C. L. P., Soares, J. B. P. and Penlidis, A., "Copolymerization of Ethylene and 1-Hexene with in-situ Supported $Et[Ind]_2ZrCl_2$," Macromol. Chem. Phys., 200(10), 2372- 2376(1999). https://doi.org/10.1002/(SICI)1521-3935(19991001)200:10<2372::AID-MACP2372>3.0.CO;2-4
  8. Chien, J. C. W. and Nozaki, T., "Ethylene-Hexene Copolymerization by Heterogeneous and Homogeneous Ziegler-Natta Catalysts and the "Comonomer Effect"," J. Polym.Sci. A: Polym. Chem., 31(1), 227-237(1993). https://doi.org/10.1002/pola.1993.080310127
  9. Cruz, V. L., Escalona, A. M. and Salazar, J. M., "A Theoretical Study of the Comonomer Effect In the Ethylene Polymerization with Zirconocene Catalytic Systems," J. Polym.Sci. A: Polym. Chem., 36(7), 1157-1167(1998). https://doi.org/10.1002/(SICI)1099-0518(199805)36:7<1157::AID-POLA13>3.0.CO;2-6
  10. Quijada, R., Narváez1, A., Rojas1, R., Rabagliati, F. M., Galland, G. B., Maule, R. S., Benavente, R. and Perez, E., "Synthesis and Characterization of Copolymers of Ethylene and 1-Octadecene Using the Rac-Et(Ind)2ZrCl2/MAO Catalyst System," Macromol. Chem. Phys. 200(6), 1306-1310(1999). https://doi.org/10.1002/(SICI)1521-3935(19990601)200:6<1306::AID-MACP1306>3.0.CO;2-4
  11. Shan, C. L. P., Soares, J. B. P. and Penlidis, A., "Ethylene/1- Octene Copolymerization Studies with in situ Supported Metallocene Catalysts: Effect of Polymerization Parameters on the Catalyst Activity and Polymer Microstructure," J. Polym.Sci. A: Polym. Chem., 40(24), 4426-4451(2002). https://doi.org/10.1002/pola.10533
  12. Ferrari, D., Knoke, S., Tesche, B. and Fink, G.., "Microkinetic Videomicroscopic Analysis of the Olefin-Copolymerization with Heterogeneous Catalysts," Macromol. Symp., 236(1), 78-87(2006).
  13. Rabagliati, F. M., Concino, R. A., Ilarduya, A. M. and Munoz- Guerra, S., "Homo- and Copolymerization of Styrene and 1-Alkene Using $Ph_2Zn-Et(Ind)_2ZrCl_2-MAO$ Initiator Systems," Eur. Polym. J., 41(5), 1013-1019(2005). https://doi.org/10.1016/j.eurpolymj.2004.12.003