초기재령에서 각종 혼합콘크리트의 염소이온 고정화능력에 관한 연구

A Study on Chloride Binding Capacity of Various Blended Concretes at Early Age

  • 송하원 (연세대학교 사회환경시스템공학부) ;
  • 이창홍 (연세대학교 사회환경시스템공학부) ;
  • 이근주 (연세대학교 사회환경시스템공학부)
  • 투고 : 2008.04.01
  • 심사 : 2008.07.11
  • 발행 : 2008.09.30

초록

본 연구에서는 보통포틀랜드시멘트(OPC: ordinary Portland cement), 플라이애쉬(PFA: pulverised fly ash), 고로슬래그미분말(GGBFS: ground granulated blast furnace slag), 실리카퓸(SF: Silica fume)등의 각종 결합재를 적용한 시멘트 페이스트의 염소이온 고정화능력에 관하여 연구하였다. 각각의 사용 시멘트 페이스트는 40%의 물/결합재로 PFA, GGBFS 및 SF 혼화제의 각기 다른 치환률을 갖도록 하였으며 미리 혼합수내에 결합재 중량당 0.1~0.3%의 염소이온을 배합수내에 혼입 포함시켜 배합되어 제조되었다. 염소이온의 측정은 7일간 양생 후 수분 추출 방법을 이용하여 측정하였다. 실험을 통해 염소이온 고정화 능력이 결합재 종류 및 치환률에 의존하고 있음을 확인하였고, 총 염소이온량의 증가는 염소이온 고정화능력을 제한하여 결론적으로 염소이온 고정화를 감소시키고 있음을 보였다. 본 연구에서 최대 30%의 치환율을 가진 PFA와 60%의 치환률을 가진 GGBFS의 경우는 OPC보다 염소이온고정화 능력이 작았으며, SF의 치환률의 증가는 고정화를 감소시키고 있음을 확인하였으며, 이는 포졸란계 재료의 잠재 수화반응 혹은 공극수의 pH 저하등의 이유로 판단된다. 재령 7일에서의 염소이온의 고정화능력은 염해부식에 대한 저항성으로 나타내어지며, 염분을 혼입한 경우의 고정화능력의 순서는 30%PFA > 10%SF > 60%GGBFS > OPC로 나타났다. 더욱이 염소이온의 고정화 거동은 Langmuir isotherm 및 Freundlich isotherm으로 잘 표현될 수 있음을 보였다.

This paper studies the early-aged chloride binding capacity of various blended concretes including OPC(ordinary Portland cement), PFA(pulversied fly ash), GGBFS(ground granulated blast furnace slag) and SF(silica fume) cement paste. Cement pastes with 0.4 of a free water/binder ratio were cast with chloride admixed in mixing water, which ranged from 0.1 to 3.0% by weight of cement and different replacement ratios for the PFA, GGBFS and SF were used. The content of chloride in each paste was measured using water extraction method after 7 days curing. It was found that the chloride binding capacity strongly depends on binder type, replacement ratio and total chloride content. An increase in total chloride results in a decrease in the chloride binding, because of the restriction of the binding capacity of cement matrix. For the pastes containing maximum level of PFA(30%) and GGBFS(60%) replacement in this study, the chloride binding capacity was lower than those of OPC paste, and an increase in SF resulted in decreased chloride binding, which are ascribed to a latent hydration of pozzolanic materials and a fall in the pH of the pore solution, respectively. The chloride binding capacity at 7 days shows that the order of the resistance to chloride-induced corrosion is 30%PFA > 10%SF > 60%GGBFS > OPC, when chlorides are internally intruded in concrete. In addition, it is found that the binding behaviour of all binders are well described by both the Langmuir and Freundlich isotherms.

키워드

참고문헌

  1. Glass, G.K. and Buenfeld, N.R., "Reinforced concrete-The principles of its deterioration and repair", In: Modern Matters-Principles and Practice in Conserving Recent Architecture, S. McDonald, (Eds.), Donhead Publishing, 1996, pp. 101-112
  2. Delagrave, A, Marchand, J, Ollivier, J-P, Julien, S. and Hazrati, K., "Chloride binding capacity of various hydrated cement paste systems", Adv. Cem. Mat. 6, 1997, pp. 28-35
  3. Mohammed, T.U. and Hamada, H., "Relationship between free chloride and total chloride contents in concrete", Cem. Concr. Res. 33, 2003, pp. 1487-1490
  4. Dhir, R.K. and Jones, M.R., "Development of chloride-resisting concrete using fly ash", Fuel 78, 1999, pp. 137-142 https://doi.org/10.1016/S0016-2361(98)00149-5
  5. Glass, G.K. Hassanein, N.M. and Buenfeld, N.R., "Neural network modelling of chloride binding", Mag. Concr. Res., 49, 1997, pp. 323-335
  6. Arya, C. Buenfeld, N.R. and Newman, J.B., "Factors influencing chloride-binding in concrete", Concr. Res. 20, 1990, pp. 291-300 https://doi.org/10.1016/0008-8846(90)90083-A
  7. Suryavanshi, A.K. Scantlebury, J.D. and Lyon, S.B., "Mechanism of Friedel's salt formation in cements rich in tri-calcium aluminate", Cem. Concr. Res. 26, 1996, pp. 717-727 https://doi.org/10.1016/S0008-8846(96)85009-5
  8. Xu, Y., "The influence of sulphates on chloride binding and pore solution chemistry", Concr. Res. 27, 1997, pp. 1841-1850
  9. Sandberg, P., "Studies of chloride binding in concrete exposed in a marine environment", Cem. Con. Res., 29, 1999, pp. 473-477 https://doi.org/10.1016/S0008-8846(98)00191-4
  10. Neville, A.M., "Properties of Concrete", 4th edn., 1995, Longman Group Ltd
  11. Hussain, S.E., Rasheeduzafar, S. Al-Musallam, A. and Al-Gahtani, A.S. "Factors affecting threshold chloride for reinforcement corrosion in concrete", Cem. Concr. Res., 25, 1995, pp. 1543-1555 https://doi.org/10.1016/0008-8846(95)00148-6
  12. Suryavanshi, A.K. Scantlebury, J.D. and Lyon, S.B., "The binding of chloride ions by sulphate resistant Portland cement", Cem. Concr. Res., 25, 1995, pp. 581-592
  13. Page, C.L. Short, N.R. and Holden, W.R., "The influence of different cements on chloride-induced corrosion of reinforcing steel", Cem. Concr. Res. 16, 1986, pp. 79-86
  14. Glass, G.K. and Buenfeld, N.R., "The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete", Corros. Sci. 42, 2000, pp. 329-344 https://doi.org/10.1016/S0010-938X(99)00083-9
  15. Sandberg, P., "Studies of chloride binding in concrete exposed in a marine environment", Concr. Res. 29, 1999, pp. 473-477 https://doi.org/10.1016/S0008-8846(98)00191-4
  16. Arya, C. Buenfeld, N.R. and Newman, J.B., "Assessment of simple methods of determining the free chloride ion content of cement paste", Cem. Concr. Res. 17, 1987, pp. 907-918
  17. Sergi, G. Yu, S.W. and Page, C.L., "Diffusion of chloride and hydroxyl ions in cementitious materials exposed to a saline environment", Mag. Concr. Res., 44, 1992, pp. 63-69
  18. "Standard test method for water-soluble chloride in mortar and concrete", ASTM C1218/C1218M-99
  19. Page, C.L. Short, N.R. and El Tarras, A., "Diffusion of chloride ions in hardened cement pastes", Cem. Concr. Res. 11, 1981, pp. 395-406 https://doi.org/10.1016/0008-8846(81)90111-3
  20. Dhir, R.K. El-Mohr, M.A.K. and Dyer, T.D., "Chloride binding in GGBS concrete", Cem. Concr. Res. 26, 1996, pp. 1767-1773
  21. FIP, Condensed Silica Fume in Concrete: State of Art Report, 1st edn., 1988, Thomas Telford
  22. Glass, G.K. and Buenfeld, N.R., "The presentation of the chloride threshold level for corrosion of steel in concrete", Corros. Sci. 39, 1997, pp. 1001-1013 https://doi.org/10.1016/S0010-938X(97)00009-7
  23. Tritthart, J., Chloride binding: "II The influence of the hydroxide concentration in the pore solution of hardened cement paste on chloride binding", Cem. Concr. Res. 19, 1989, pp. 683-691
  24. Byfors, K. Hansson, C.M. and Tritthart J., "Pore solution expression as a method to determine the influence of mineral additives on chloride binding", Cem. Concr. Res., 16, 1986, pp. 760-770 https://doi.org/10.1016/0008-8846(86)90050-5
  25. ASTM C 1218, "Standard test method for water-soluble chloride in mortar and concrete", American Society for Testing and Materials 1999 USA
  26. Ary, C. and Newman, J.B., "An assessment of four methods of determining the free chloride content of concrete", Mater. Struct., 23, 1990, pp. 319-330
  27. Arya C. and Xu, Y., "Effect of cement type on chloride binding and corrosion of steel in concrete", Cem. Concr. Res., 25, 1995, pp. 893-902 https://doi.org/10.1016/0008-8846(95)00080-V
  28. Lambert, P. Page, C.L. and Vassie, P.R.W., "Investigations of reinforcement corrosion. 2. Electrochemical monitoring of steel in chloride-contaminated concrete", Mater. Struct., 24, 1991, pp. 351-358 https://doi.org/10.1007/BF02472068
  29. Glass, G.K. Reddy, B. Buenfeld, N.R. and Viles, R.F., "Process for the protection of reinforcement in reinforced concrete", International Patent Publication 2001 No. WO 01/55056 A1
  30. Song, H.W. and Ann, K.Y., "Chloride threshold level for steel corrosion in concrete", Corrosion Science, V.49, 2007, pp. 4113-4133 https://doi.org/10.1016/j.corsci.2007.05.007
  31. British Standard 8110: "Part 1. Structural use of concrete - Code of practice for design and construction", British Standards Institute 1985 UK
  32. Hansson, C.M. and Sorensen, B., "The threshold concentration of chloride in concrete for initiation of reinforcement corrosion", In: Corrosion Rates of Steel in Concrete, Berke, N.S. Chaker, V. and Whiting, D. eds., ASTM STP 1065, 1988, pp. 3-16
  33. Breit, W. and Schiessl, P., "Investigation on the threshold value of the critical chloride content", In: 4th CANMET/ACI Conference on Durability of Concrete, V.M. Malhotra, eds., ACI SP70, 1997, pp. 363-372
  34. Ann, K.Y. and Buenfeld, N.R., "The influence of calcium nitrite on the initiation of chloride-induced corrosion of steel in concrete", In: Concrete under Sever Condition, Oh, B.H. Sakai, K. Gjorv, O.E. and Banthia, N. eds., Consec 04, 2004, pp. 287-296
  35. Glass, G.K. Reddy, B. and Buenfeld, N.R., "Corrosion inhibition in concrete arising from its acid neutralisation capacity," Corros. Sci., 42, 2000, pp. 1587-1598
  36. Hussain, S.E. and Rasheeduzafar, S., "Corrosion resistance performance of fly ash blended cement concrete", ACI Mat. J. 91, 1994, pp. 264-273
  37. Song, H. W. Lee, C.H. and Ann, K.Y., "Factors influencing chloride transport in concrete structures exposed to a marine environment", Cem, Concr, Com, V. 30, 2008, pp. 113-121 https://doi.org/10.1016/j.cemconcomp.2007.09.005
  38. Song, H. W. Ann, K.Y. Lee, C.H. Jung, M.S., "Chloride threshold value for steel corrosion in concrete considering the buffering capacity against a fall in the pH", ACI Mat J, 2008 in revision
  39. Ann, K.Y. Song, H.W. Lee, C.H. and Lee, K.C., "Build-up of surface chloride and its influence on corrosion initiation time of steel in concrete", EASEC-10, The Tenth East Asia-Pacific Conference on Structural Engineering & Construction, Thai, Bangkok, 2006, pp. 265-274
  40. Song, H. W. Ann, K.Y. Lee, C.H. Jung, M.S., "Chloride binding isotherms in cement paste containing various binders", Life Cycle Management of Coastal Concrete Structues Conference. Nagaoka, Japan, 2006, pp. 109-114
  41. Song, H. W. Lee, C.H. Jung, M.S. and Ann, K.Y., "Development of chloride binding capacity in cement pastes and the influencing of the pH of hydration products", J. Can, Civ, Eng, 2008 in revision
  42. Song, H. W. Pack, S.W. Lee, C.H. and Kwon, S. J., "Service life prediction of concrete structures under marine environment considering coupled deterioration", Res, Build, Mon, V. 12, N. 4, 2006, pp. 265-284