메조 세공의 고체산 촉매를 이용한 2-나프톨의 에테르화 반응

The Etherification of 2-Naphthol over Mesoporous Solid Acid Catalysts

  • 김영진 (한국화학연구원 신화학연구단) ;
  • ;
  • 윤성훈 (한국화학연구원 신화학연구단) ;
  • 김희영 (한국화학연구원 신화학연구단) ;
  • 이용택 (충남대학교 화학공학과) ;
  • 이철위 (한국화학연구원 신화학연구단)
  • Kim, Young Jin (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Bhatt, Sharad Durgashanker (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Yoon, Songhun (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Kim, Hee Young (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology) ;
  • Lee, Yongtaek (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Chul Wee (Advanced Chemical Technology Division, Korea Research Institute of Chemical Technology)
  • 투고 : 2007.10.12
  • 심사 : 2007.10.28
  • 발행 : 2008.04.30

초록

여러 가지 고체산 촉매를 이용하여 2-naphthol과 에탄올의 에테르화 반응을 연구하였다. 본 연구에서 촉매는 CNS, CNSWS, SCMS, MCF, SBA-15와 이 촉매에 sulfonic acid를 붙인 $CNS-SO_3H$, $CNSWS-SO_3H$, $SCMS-SO_3H$, $MCF-SO_3H$, $SBA-15-SO_3H$를 사용하였다. 반응온도 $180^{\circ}C$, $LHSV=1h^{-1}$, 에탄올/2-naphthol의 몰 비 20인 조건으로 고정층 반응기에서 반응하여 각 촉매에서 2-naphthol의 전환율과 2-naphthyl ethyl ether의 선택도를 측정하였다. 2-naphthol의 전환율과 2-naphthyl ethyl ether의 선택도는 carbon 계열의 고체산 촉매에서 보다 silica 계열의 고체산 촉매에서 더 높게 나타났다. silica 계열의 고체산 촉매에서 2-naphthol의 전환율은 70~90%, 2-naphthyl ethyl ether의 선택도는 90% 이상으로 나타났다. 촉매의 특성을 관찰하기 위해 XRD, SEM, TEM, $NH_3-TPD$를 수행하였다.

The etherification of 2-naphthol with ethanol has been carried out over various solid acid catalysts. CNS, CNSWS, SCMS, MCF, and SBA-15 with and without sulfonic acid were used in this study as solid acid catalysts. The conversion of 2-naphthol and the selectivity of 2-naphthyl ethyl ether were obtained at reaction temperature = $180^{\circ}C$, $LHSV=1h^{-1}$, ethanol/2-naphthol molar ratio = 20 using a fixed-bed down flow reactor. The conversion of 2-naphthol and the selectivity of 2-naphthyl ethyl ether over silica group catalysts were higher than them over carbon group catalysts. The conversion of 2-naphthol was 70-90% and the selectivity of 2-naphthyl ethyl ether was more than 90% over silica group solid acid catalysts. It was performed XRD, SEM, TEM, and $NH_3-TPD$ to characterize solid acid catalysts.

키워드

과제정보

연구 과제 주관 기관 : 한국과학재단

참고문헌

  1. Yadav, G. D. and Krishnan, M. S., "Etherification of $\beta$‚-Naphthol with Alkanols Using Modified Clays and Sulfated Zirconia," Ind. Eng. Chem. Res., 37(8), 3358-3365(1998) https://doi.org/10.1021/ie970814x
  2. Selvaraj, M., Pandurangan, A., Seshadri, K. S., Sinha, P. K., Krishnasamy, V. and Lal, K. B., "Synthesis of ethyl $\beta$-naphthyl ether (neroline) using $SO_{4}^{2-}$/Al-MCM-41 Mesoporous Molecular Sieves," J. Mol. Catal. A: Chem., 192(1-2), 153-170(2003) https://doi.org/10.1016/S1381-1169(02)00414-4
  3. Chen, L.-W., Chou, C.-Y. and Ko, A.-N., "Novel Effcient Synthesis of $\beta$‚-naphthyl Methyl Ether using Sulfated Mesoporous Molecular Sieve Al-MCM-41," Applied Catalysis A: General, 178(1), L1-L6(1999) https://doi.org/10.1016/S0926-860X(98)00271-3
  4. Kim, J. W., Kim, D. J., Han, J. U., Kang, M., Kim, J. M. and Yie, J. E., "Preparation and Characterization of Zeolite Catalysts for Etherification Reaction," Catalysis Today, 87(1-4), 195-203(2003) https://doi.org/10.1016/j.cattod.2003.10.006
  5. Kirumakki, S. R., Nagaraju, N., Chary, K. V. R. and Narayanan, S., "A facile O-alkylation of 2-naphthol over Zeolites H$\beta$, HY, and HZSM5 using Dimethyl Carbonate and Methanol," J. Catalysis, 221(2), 549-559(2004) https://doi.org/10.1016/j.jcat.2003.09.013
  6. Porchet, S., Minsker, L. K., Doepper, R. and Renken, A., "Catalyst Development for the Selective Methylation of Catechol," Chem. Eng. Sci., 51(11), 2933-2938(1996) https://doi.org/10.1016/0009-2509(96)00177-7
  7. Yoon, S. B., Sohn, K., Kim, J. Y., Shin, C.-H, Yu, J.-S. and Hyeon, T., "Fabrication of Carbon Capsules with Hollow Macroporous Core/Mesoporous Shell Structures," Adv. Mater., 14(1), 19-21(2002) https://doi.org/10.1002/1521-4095(20020104)14:1<19::AID-ADMA19>3.0.CO;2-X
  8. Zhao, D., Feng, J., Huo, Q., Melosh, N., Fredrickson, G. H., Chmelka, B. F. and Stucky, G. D., "Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores," Science, 279(5 350), 548-552(1998) https://doi.org/10.1126/science.279.5350.548
  9. Zhao, D., Huo, Q., Feng, J., Chmelka, B. F. and Stucky, G. D., "Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures," J. Am. Chem. Soc., 120(24), 6024-6036(1998) https://doi.org/10.1021/ja974025i
  10. Lettow, J. S., Han, Y. J., Schmidt-Winkel, P., Yang, P., Zhao, D., Stucky, G. D. and Ying, J. Y., "Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas," Langmuir, 16(22), 8291-8295(2000) https://doi.org/10.1021/la000660h
  11. Szymaska, K., Bryjak, J., Mrowiec-Biaon , J. and Jarze˛bski, A. B. "Application and Properties of Siliceous Mesostructured Cellular Foams as Enzymes Carriers to Obtain Efficient Biocatalysts," Micropor. Mesopor. Mater., 99(1-2), 167-175(2007) https://doi.org/10.1016/j.micromeso.2006.08.035
  12. Kim, H., Jung, J. C., Kim, P., Yeom, S. H., Lee, K.-Y. and Song, I. K., "Preparation of $H_{3}PMo_{12}O_{40}$ Catalyst Immobilized on Surface Modified Mesostructured Cellular foam (SM-MCF) Silica and its Application to the Ethanol Conversion Reaction," J. Mol. Catal. A: Chem., 259(1-2), 150-155(2006) https://doi.org/10.1016/j.molcata.2006.06.032
  13. Takagaki, A., Toda, M., Okamura, M., Kondo, J. N., Hayashi, S., Domen, K. and Hara, M., "Esterification of Higher Fatty Acids by a Novel Strong Solid Acid," Catalysis Today, 116(2), 157-161 (2006) https://doi.org/10.1016/j.cattod.2006.01.037
  14. Yang, L. M., Wang, Y. J., Luo, G. S. and Dai, Y. Y., "Functionalization of SBA-15 Mesoporous Silica with Thiol or Sulfonic Acid Groups Under the Crystallization Conditions," Micropor. Mesopor. Mater., 84(1-3), 275-282(2005) https://doi.org/10.1016/j.micromeso.2005.05.037
  15. Zheng, Y., Li, J., Zhao, N., Wei, W. and Sun, Y., "One-pot Synthesis of Mesostructured AlSBA-15-$SO_{3}$H Effective Catalysts for the Esterification of Salicylic Acid with Dimethyl Carbonate," Micropor. Mesopor. Mater., 92(1-3), 195-200(2006) https://doi.org/10.1016/j.micromeso.2006.01.011
  16. Karimi, B. and Khalkhali, M., "Silica Functionalized Sulfonic Acid as a Eecyclable Interphase Catalyst for Chemoselective Thioacetalization of Carbonyl Compounds in Water," J. Mol. Catal. A: Chem., 271(1-2), 75-79(2007) https://doi.org/10.1016/j.molcata.2007.02.018
  17. Gupta, R., Paul, S. and Gupta, R., "Covalently Anchored Sulfonic Acid onto Silica as an Efficient and Recoverable Interphase Catalyst for the Synthesis of 3,4-dihydropyrimidinones/ thiones," J. Mol. Catal. A: Chem., 266(1-2), 50-54(2007) https://doi.org/10.1016/j.molcata.2006.10.039
  18. Margolese, D., Melero, J. A., Christiansen, S. C., Chmelka, B. F. and Stucky, G. D., "Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups," Chem. Mater., 12(8), 2448-2459(2000) https://doi.org/10.1021/cm0010304
  19. Reddy, S. S., Raju, B. D., Kumar, V. S., Padmasri, A. H., Narayanan, S. and Rao, K. S. R., "Sulfonic Acid Functionalized Mesoporous SBA-15 for Selective Synthesis of 4-phenyl-1,3-dioxane," Catal. Commun., 8(3), 261-266(2007) https://doi.org/10.1016/j.catcom.2006.05.050
  20. Kumar, V. S., Nagaraja, B. M., Shashikala, V., Seetharamulu, P., Padmasri, A. H., Raju, B. D. and Rao, K. S. R., "Role of Acidic and Basic Sites of $Al_{2}O_{3}$ in Predicting the Reaction Pathway of Isophorone Transformation," J. Mol. Catal. A: Chem., 223(1-2), 283-288(2004) https://doi.org/10.1016/j.molcata.2003.08.034