유한요소모델에서 레버암을 이용한 상악 6전치 설측 견인 시 초기 이동 양상

The Pattern of Initial Displacement in Lingual Lever Arm Traction of 6 Maxillary Anterior Teeth According to Different Material Properties: 3-D FEA

  • 최인호 (단국대학교 치과대학 교정학 교실) ;
  • 차경석 (단국대학교 치과대학 교정학 교실) ;
  • 정동화 (단국대학교 치과대학 교정학 교실)
  • Choi, In-Ho (Department of Orthodontic Dentistry, Graduate School, Dankook University) ;
  • Cha, Kyung-Suk (Department of Orthodontic Dentistry, Graduate School, Dankook University) ;
  • Chung, Dong-Hwa (Department of Orthodontic Dentistry, Graduate School, Dankook University)
  • 투고 : 2008.01.22
  • 심사 : 2008.06.25
  • 발행 : 2008.06.30

초록

최근 치료기간의 단축과 심미성을 동시에 충족시키는 6전치를 설측에서 견인하는 레버암을 이용한 견인방법이 사용되고 있다. 본 연구에서는 상악골의 고전적인 2가지 물성으로 구성된 유한 요소 모델 (단순모델)과 새로이 개발된 24가지 물성으로 구성된 모델 (복합모델)을 생성하여 상악 6전치를 후방 견인 시, 각 치아와 치주인대에 나타나는 초기 이동량과 응력분포를 분석하였다. 23세 성인 남자의 CT 촬영으로 얻은 DICOM 영상정보를 3차원 리버스 엔지니어링 컴퓨터영상프로그램 Mimics를 이용하여 상악골 및 상악 전치부의 3차원 입체영상모델로 재구성하여 finite element analysis (FEA) 모델을 완성하였다. 모델은 상악골, 상악 전치부 각 치아의 치주인대, lingual traction arm의 부분으로 구성되었다. 상악 6전치의 저항중심 부위를 지나도록 교합면에 대하여 평행하게 200g의 후방견인력을 적용한 후 나타나는 초기 이동량 및 응력 분포를 3차원 유한 요소법을 이용한 해석을 통해 비교하였다. 실험 결과 24가지 물성으로 구성된 복합모델이 2가지 물성으로 구성된 단순 모델에 비해 상악 중절치에서 보다 후방 이동되는 양상이 크게 나타났으며 수직적인 회전 양상 역시 크게 나타났다. 두 모델 모두 중절치와 측절치는 조절성 경사이동의 형태로 후방이동양이 견치보다 크게 나타났으나 견치는 이동량이 적은 대신 치근의 이동이 더 크게 나타났다. 수직적 이동양상에 있어 두 모델 모두 측절치와 견치의 접촉점을 중심으로 절치는 하방으로 견치는 상방으로 움직이는 회전양상을 나타났다. 응력의 비교에서는 단순 모델과 복합 모델에서 유사한 결과를 보였다. 비록 각기 다른 물성으로 인해 후방 이동량에서는 차이가 나타났으나 기본적인 치아의 이동양상은 두 모델에서 모두 같게 나타났다.

The aim of this study was to analyze the initial movement and the stress distribution of each tooth and periodontal ligament during the lingual lever-arm retraction of 6 maxillary incisors using FEA. Two kinds of finite element models were produced: 2-properties model (simple model) and 24-properties model (multi model) according to the material property assignment. The subject was an adult male of 23 years old. The DICOM images through the CT of the patient were converted into the 3D image model of a skull using the Mimics (version 10.11, Materialise's interactive Medical Image Control System, Materialise, Belgium). After series of calculating, remeshing, exporting, importing process and volume mesh process was performed, FEA models were produced. FEA models are consisted of maxilla, maxillary central incisor, lateral incisor, canine, periodontal ligaments and lingual traction arm. The boundary conditions fixed the movements of posterior, sagittal and upper part of the model to the directions of X, Y, Z axis respectively. The model was set to be symmetrical to X axis. Through the center of resistance of maxilla complex, a retraction force of 200g was applied horizontally to the occlusal plane. Under this conditions, the initial movements and stress distributions were evaluated by 3D FEA. In the result, the amount of posterior movement was larger in the multi model than in the simple model as well as the amount of vertically rotation. The pattern of the posterior movement in the central incisors and lateral incisors was controlled tipping movement, and the amount was larger than in the canine. But the amount of root movement of the canine was larger than others. The incisor rotated downwardly and the canines upwardly around contact points of lateral incisor and canine in the both models. The values of stress are similar in the both simple and multi model.

키워드

참고문헌

  1. Fujita K. Development of lingual brachet technique. (Esthetic and hygienic approach to orthodontic treatment) (Part 1) Background and design. Shika Rikogaku Zasshi 1978;19:81-6
  2. Chung KR, Oh MY, Ko SJ. Corticotomy-assisted orthodontics. J Clin Orthod 2001;35:331-9
  3. Siatkowski RE. Lingual lever-arm technique for en masse translation in patients with generalized marginal bone loss. J Clin Orthod 1999;33:700-4
  4. Park YC, Choi KC, Lee JS, Kim TK. Lever-arm mechanics in lingual orthodontics. J Clin Orthod 2000;34:601-5
  5. Yamaguchi K, Nanda RS, Morimoto N, Oda Y. A study of force application, amount of retarding force, and bracket width in sliding mechanics. Am J Orthod Dentofacial Orthop 1996;109:50-6 https://doi.org/10.1016/S0889-5406(96)70162-2
  6. Türk T, Elekdag-Türk S, Dinçer M. Clinical evaluation of the centre of resistance of the upper incisors during retraction. Eur J Orthod 2005;27: 196-201 https://doi.org/10.1093/ejo/cjh096
  7. Davidian E. Use of a computer model to study the force distribution on the root of the maxillary central incisor. Am J Orthod 1971;59:581-8 https://doi.org/10.1016/0002-9416(71)90004-2
  8. Nikolai TJ. On optimum orthodontic force theory as applied to canine retraction. Am J Orthod 1975;68:290-302 https://doi.org/10.1016/0002-9416(75)90237-7
  9. Burstone CJ. Optimizing anterior and canine retraction. Am J Orthod 1976;70:1-19 https://doi.org/10.1016/0002-9416(76)90257-8
  10. 조정현, 이기수, 박영국. 상악 제일 대구치의 저항중심에 관한 유한요소법적 분석. 대치교정지 1993;23:263-73
  11. 박기호, 손병화. Laser 반사측정법을 이용한 상악 전치부 함입시 저항중심의 수평적 위치에 관한 연구. 대치교정지 1993;23:619-31
  12. Vanden Bulcke MM, Burstone CJ, Sachdeva RC, Dermaut LR. Location of the centers of resistance for anterior teeth during retraction using the laser reflection technique. Am J Orthod Dentofacial Orthop 1987;91:375-84 https://doi.org/10.1016/0889-5406(87)90390-8
  13. Tanne K, Nagataki T, Inoue Y, Sakuda M, Burstone CJ. Patterns of initial tooth displacements associated with various root lengths and alveolar bone heights. Am J Orthod Dentofacial Orthop 1991;100:66-71 https://doi.org/10.1016/0889-5406(91)70051-W
  14. 민영규, 황충주. Laser 반사측정법을 이용한 전치부 후방견인 시 치조골 높이와 치근길이 감소에 따른 저항중심의 위치변화에 관한 연구. 대치교정지 1999;29:165-81
  15. 우재영, 박영철. Laser 반사측정법을 이용한 상악 전치부의 후방견인시 저항중심의 수직적 위치에 관한 실험적 연구. 대치교정지 1979;23:375-89
  16. aputo AA, Chaconas SJ, Hayashi RK. Photoelastic visualization of orthodontic forces during canine retraction. Am J Orthod 1974;65:250-9 https://doi.org/10.1016/S0002-9416(74)90330-3
  17. Eden JD, Waters NE. An investigation into the characteristics of the PG canine retraction spring. Am J Orthod Dentofacial Orthop 1994;105:49-60 https://doi.org/10.1016/S0889-5406(94)70099-0
  18. Tanne K, Koening HA, Brustone CJ. Moment to force ratios and the center of rotation. Am J Orthod 1988;94:426-31 https://doi.org/10.1016/0889-5406(88)90133-3
  19. Wilson AN, Middleton J, McGuinness N, Jones M. A finite element study of canine retraction with a palatal spring. Br J Orthod 1991;18:211-8 https://doi.org/10.1179/bjo.18.3.211
  20. Sung SJ, Baik HS, Moon YS, Yu HS, Cho YS. A comparative evaluation of different compensating curves in the lingual and labial techniques using 3D FEM. Am J Orthod Dentofacial Orthop 2003;123: 441-50 https://doi.org/10.1067/mod.2003.9
  21. Cattaneo PM, Dalstra M, Frich LH. A three- dimensional finite element model from computed tomography data: a sem-automated method. Proc Inst Mech Eng 2001;215:203-13
  22. Cattaneo PM., Dalstra M., Birte Melsen. The transfer of occlusal forces through the maxillary molars : a finite element study. Am J Orthod 2003;123:367-73 https://doi.org/10.1067/mod.2003.73
  23. Maki K, Inou N, Takanishi A, Miller AJ. Modeling of structure, quality, and function in the orthodontic patient. Orthod Craniofac Res 2003;52:179-82
  24. Coolidge ED. The thickness of the human periodontal membrane. J Am Dent Assoc Dent Cosmos 1937;24:1260-70 https://doi.org/10.14219/jada.archive.1937.0229
  25. Esses SI, Lotz JC, Hayes WC. Biomechanical properties of the proximal femur determined in vitro by single-energy quantitative computed tomography. J Bone Miner Res 1989;4:715-21
  26. Harp JH, Aronson J, Hollis M. Non invasive determination of bone stiffness for distraction osteogeonesis by computed tomography scans. Clin Orthop 1994;301:42-8
  27. Storey E. Tissue response to the movement of bones. Am J Orthod 1973;64:229-47 https://doi.org/10.1016/0002-9416(73)90017-1
  28. Davidovitch Z, Shanfeld JL. Cyclic AMP levels in alveolar bone of orthodontically-treated cats. Arch Oral Biol 1975;20:567-74 https://doi.org/10.1016/0003-9969(75)90076-X
  29. Melsen B. Tissue reaction to orthodontic tooth movement a new paradigm. Eur J Orthod 2001;23: 671-81 https://doi.org/10.1093/ejo/23.6.671
  30. Iwasaki LR, Crouch LD, Tutor A, Gibson S, Hukmani N, Marx DB, Nickel JC. Tooth movement and cytokines in gingival crevicular fluid and whole blood in growing and adult subjects. Am J Orthod Dentofacial Orthop 2005;128:483-91 https://doi.org/10.1016/j.ajodo.2004.03.037
  31. Lauretani F, Bandinelli S, Griswold ME. Longitudinal Changes in Bone Density and Geometry in a Population- Based Study. J Bone Miner Res 2007;12
  32. Cooper DM, Thomas CD, Clement JG, Turinsky AL, Sensen CW, Hallgrímsson B. Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone 2007;40:957-65 https://doi.org/10.1016/j.bone.2006.11.011
  33. Wilcko WM, Wilcko MT, Bouquot JE, Ferguson DJ. Rapid orthodontics with alveolar reshaping: two case reports of decrowding. Int J Periodontics Restorative Dent 2001;21:9-19
  34. Ren Y, Maltha JC, Von den Hoff JW, Kuijpers-Jagtman AM. Age effect on orthodontic tooth movement in rats. J Dent Res 2003;82:38-42 https://doi.org/10.1177/154405910308200109
  35. 정동화. CT 상의 HU 수치에 따른 상악골 전방견인 효과의 유한 요소 분석. 대치교정지 2006;36: 412-21
  36. Van Den Bulcke MM., Burstone C. Location of the centers of resistance for anterior teeth during retraction using the laser reflection technique. Am J Orthod Dentofacial Orthop 1987;91:375-84 https://doi.org/10.1016/0889-5406(87)90390-8
  37. Andersen KL, Mortensen HT, Pedersen EH, Melsen B. Determination of stress levels and profiles in the periodontal ligament by means of an improved three-dimensional finite element model for various types of orthodontic and natural force systems. J Biomed Eng 1991;13:293-303 https://doi.org/10.1016/0141-5425(91)90111-J
  38. Yoshida N, Jost-Brinkmann PG, Koga Y, Mimaki N, Kobayashi K. Experimental evaluation of initial tooth displacement, center of resistance, and center of rotation under the influence of an orthodontic force. Am J Orthod Dentofacial Orthop 2001;120:190-7 https://doi.org/10.1067/mod.2001.115036
  39. 우재영, 박영철. Laser 반사측정법을 이용한 상악 전치부의 후방견인시 정항중심의 수직적 위치에 관한 실험적 연구. 대치교정지 1979;23: 375-89
  40. 이혜경, 정규림. 상악 6전치부의 후방 견인시 저항중심의 수직적 위치에 관한 3차원 유한요소법적 연구. 대치교정지 2001;31:425-38
  41. 김찬년, 성재현, 경희문. 골격성 고정원을 이용한 상악 6전치 후방 견인시 힘의 적용점 변화에 따른 치아 이동 양상에 관한 유한 요소법적 분석. 대치교정지 2003;33:339-50
  42. Berman M. Anterior space maintenance: aesthetics and function. Br J Orthod 1988;15:57-61 https://doi.org/10.1179/bjo.15.1.57
  43. Hong RK, Heo JM, Ha YK. Lever-arm and mini- implant system for anterior torque control during retraction in lingual orthodontic treatment. Angle Orthod 2005;75:129-41
  44. Yoshida N, Koga Y, Mimaki N, Kobayashi K. In vivo determination of the centres of resistance of maxillary anterior teeth subjected to retraction forces. Eur J Orthod 2001;23:529-34 https://doi.org/10.1093/ejo/23.5.529
  45. Chang YI, Shin SJ, Baek SH. Three-dimensional finite element analysis in distal en masse movement of the maxillary dentition with the multiloop edgewise archwire. Eur J Orthod 2004;26:339-45 https://doi.org/10.1093/ejo/26.3.339
  46. Young-Chel Park, Yoon-Jeong Choi. Esthetic segmental retraction retraction of maxillary anterior teeth with a palatal appliance and orthodontic mini-implants. Am J Orthod Dentofacial Orthop 2007;131:537-44 https://doi.org/10.1016/j.ajodo.2005.05.051
  47. Kurz C, Swartz ML, Andreiko C. Lingual orthodontics: a status report. Part 2: Research and development. J Clin Orthod 1982;16:735-40
  48. Andersen KL, Motensen HT, Pendersen EH, Melsen B. Determination of stress levels and profiles in the periodontal ligament by means of an improved three-dimensional finite element model for various types of orthodontic and natural force systems. J Biomed Eng 1991:13;293-303 https://doi.org/10.1016/0141-5425(91)90111-J
  49. Goel VK, Khera SC, Gurusami S, Chen RC. Effect of cavity depth on stresses in a restored tooth. J Prosthet Dent 1992;67:174-83 https://doi.org/10.1016/0022-3913(92)90449-K