과제정보
연구 과제 주관 기관 : 강원대학교
참고문헌
- Alteyrac, J., A. Cloutier, and S. Y. Zhang. 2006. Characterization of juvenile wood to transition age in black spruce (Picea mariana (Mill.) B. S. P.) at different stand densities and sampling heights. Wood Science and Technology. 40: 124-138. https://doi.org/10.1007/s00226-005-0047-4
- Bao, F. C., Z. H. Jiang, X. M. Jiang, X. X. Lu, X. Q. Luo, and S. Y. Zhang. 2001. Differences in wood properties between juvenile wood and mature wood in 10 species grown in China. Wood Science and Technology, 35: 363-375. https://doi.org/10.1007/s002260100099
- Bendtsen, B. A. and J. F. Senft. 1986. Mechanical and anatomical properties in individual growth rings of plantation-grown eastern cottonwood and loblolly pine. Wood and Fiber Science. 18(1): 23-38
- Cave, I. D. and L. Hutt. 1969. The longitudinal young's modulus of Pinus radiata. Wood Science and Technology. 3: 40-48. https://doi.org/10.1007/BF00349983
- Erickson, H. D. and T. Arima. 1974. Douglas-fir wood quality studies. Part II: Effects of age and stimulated growth on fibril angle and chemical constituents. Wood Science and Technology. 8(4): 255-265. https://doi.org/10.1007/BF00351859
- Evans, R. and J. Ilic. 2001. Rapid prediction of wood stiffness from microfibril angle and density. Forest Product Journal. 51(3): 53-57.
- Fujiwara, S. and K. C. Yang. 2000. The relationship between cell length and ring width and circumferential growth rate in five canadian species. IAWA Journal. 21(3): 335-345. https://doi.org/10.1163/22941932-90000251
- Huang, C. L. 1995. Revealing fibril angle in wood sections by ultrasonic treatment. Wood and Fiber Science. 27(1): 49-54.
- Huang, C. L., N. P. Kutscha, G. J. Leaf, and R. A. Megraw. 1997. Comparison of microfibril measurement techniques. Microfibril angle in wood, Proceeding of the IAWA/IUFRO International Workshop on the significance of microfibril angle to wood quality, New Zealand, November pp. 177-205.
- Jahan, M. S. and S. P. Mun. 2005. Effect of tree age on the cellulose structure of nalita wood (Trema orientalis). Wood Science and Technology. 39: 637-373. https://doi.org/10.1007/s00226-005-0291-7
- Leaft, G. and D. Bremer. 1998. Longitudinal shrinkage and microfibril angle in loblolly pine. In: Microfibril angle in wood. B. G. Butterfield, ed. University of Canterbury Press, Christchurch, New Zealand, pp. 27-61,
- Lichtenegger, H., A. Reiterer, S. E. Stanzel-Tschegg, and P. Fratzl. 1999. Variation of cellulose microfibril angles in softwood and hardwoods: A possible strategy of mechanical optimization. Journal of Structural Biology. 128: 257-269. https://doi.org/10.1006/jsbi.1999.4194
- Matsumura, J. and B. G. Butterfield. 2001. Microfibril angles in the root wood of Pinus radiata and Pinus nigra. IAWA Journal. 22(1): 57-62. https://doi.org/10.1163/22941932-90000268
- Megraw, R. A., G. Leaf, D. Bremer, and C. Weyerhaeuser. 1997. Longitudinal shrinkage and microfibril angle in loblolly pine. Microfibril angle in wood, Proceeding of the IAWA/IUFRO International Workshop on the significance of microfibril angle to wood quality, New Zealand, November pp. 27-61.97.
- Sahlberg, U., L. Salmen, and A. Oscarsson. 1997. The fibrillar orientation in the S2-layer of wood fibres as determined by X-ray diffraction analysis. Wood Science and Technology. 31: 77-86. https://doi.org/10.1007/BF00705923
- Senft, J. F. and B. A. Bendtsen. 1985. Measuring microfibrillar angle using light microscopy. Wood and Fiber Science. 17(4): 564-567.
- Shengzuo F., Y. Wenzhong, and T. YE. 2006. Clonal and within-tree variation in microfibril angle in poplar clones. New Forests. 31: 373-383. https://doi.org/10.1007/s11056-005-8679-7
- Wang, S. Y. and C. M. Chiu. 1988. The wood properties of Japanese cedar originated by seed vegetative reproduction in Taiwan. III. The variation of microfibril angles of tracheids. Mokuzai Gakkaishi 34(11): 881-888.
- Wardrop, A. B. 1965. Cellular differentiation in xylem. In: Cellular ultrastructure of woody plants. W. A. Cote, ed. Syracuse University Press, Syracuse, NY., pp. 61-97.
- Washusen, R., R. Evans, and S. Southerton. 2005. A study of Eucalyptus grandis and Eucalyptus globulus branch wood microstructure. IAWA Journal. 26(2): 203-210. https://doi.org/10.1163/22941932-90000112
- Ying, L., D. E. Kretschmann, and B. A. Bendtsen. 1994. Longitudinal shrinkage in fast-grown loblolly pine plantation wood. Forest Products Journal. 44(1): 58-62.
- Zhang, B., B. H. Fei, Y. Yan, and R. J. Zhao. 2007. Microfibril angle variability in masson pine (Pinus massoniana Lamb.). Forestry Studies in China. 9(1): 33-38. https://doi.org/10.1007/s11632-007-0006-2
- Zhu, J., T. Nakano, and Y. Hirakawa. 1998. Effect of growth on wood properties for Japanese larch (Larix kaempferi): Difference of annual ring structure between corewood and outerwood. Journal of Wood Science. 44: 392-396. https://doi.org/10.1007/BF01130453
- 김남훈, 이기영. 1998. 편백(Chamaecyparis obtusa E.) 수간내에서의 결정상태의 변이성. 목재공학 26(4): 20-28.
- 이소미, 김병로. 2005. 일본잎갈나무 수간내 재질변동에 관한 연구(II): 가도관 길이와 폭, 마이크로피브릴 경각, 강도의 납북방향 변동. 목재공학 33(1): 21-28.
- 이원용, 김남훈. 1992. X선회절법에 의한 주요 침.활엽수재의 미세구조 해석. 목재공학 20(1): 28-37.