DOI QR코드

DOI QR Code

Structure and expression analysis of the OsCam1-1 calmodulin gene from Oryza sativa L.

  • 발행 : 2008.11.30

초록

Calmodulin (CaM) proteins, members of the EF-hand family of $Ca^{2+}$-binding proteins, represent important relays in plant calcium signals. Here, OsCam1-1 was isolated by PCR amplification from the rice genome. The gene contains an ORF of 450 base pairs with a single intron at the same position found in other plant Cam genes. A promoter region with a TATA box at position-26 was predicted and fused to a gus reporter gene, and this construct was used to produce transgenic rice by Agrobacterium-mediated transformation. GUS activity was observed in all organs examined and throughout tissues in cross-sections, but activity was strongest in the vascular bundles of leaves and the vascular cylinders of roots. To examine the properties of OsCaM1-1, the encoding cDNA was expressed in Escherichia coli. The electrophoretic mobility shift when incubated with $Ca^{2+}$ indicates that recombinant OsCaM1-1 is a functional $Ca^{2+}$-binding protein. In addition, OsCaM1-1 bound the CaMKII target peptide confirming its likely functionality as a calmodulin.

키워드

참고문헌

  1. Knight, H. and Knight, M.R. (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci. 6, 262-267 https://doi.org/10.1016/S1360-1385(01)01946-X
  2. White, P.J. and Broadley, M.R. (2003) Calcium in Plants. Ann. Bot. 92, 478-511
  3. Buaboocha, T. and Zielinski, R.E. (2002) Calmodulin; in Protein-Protein Interactions in Plant Biology, McManus, M.T., Liang, W.A. and Allen, A.C. (eds.), pp. 285-313, Sheffield Academic Press, Sheffield, UK
  4. Yang, T. and Poovaiah, B.W. (2003) Calcium/calmodulinmediated signal network in plants. Trends Plant Sci. 8, 505-512 https://doi.org/10.1016/j.tplants.2003.09.004
  5. McCormack, E. and Braam, J. (2003) Calmodulins and related potential calcium sensors of Arabidopsis. New Phytologist 159, 585-598 https://doi.org/10.1046/j.1469-8137.2003.00845.x
  6. Boonburapong, B. and Buaboocha, T. (2007) Genome-wide identification and analyses of the rice calmodulin and related potential calcium sensor proteins. BMC Plant Biology 7, 4 https://doi.org/10.1186/1471-2229-7-4
  7. Agrawal, G.K. and Rakwal, R. (2006) Rice proteomics: A cornerstone for cereal food crop proteomes. Mass Spectrom. Rev. 25, 1-53 https://doi.org/10.1002/mas.20056
  8. Chilton, M.D., Currier, T.C. and Farrand, S.K. (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc. Natl. Acad. Sci. U.S.A. 71, 3672-3676
  9. Ohyanagi, H., Tanaka, T., Sakai, H., Shigemoto, Y., Yamaguchi, K., Habara, T., Fujii, Y., Antonio, B.A., Nagamura, Y., Imanishi, T., Ikeo, K., Itoh, T., Gojobori, T. and Sasaki, T. (2006) The Rice Annotation Project Database (RAP-DB): hub for Oryza sativa ssp. japonica genome information. Nucl. Acids Res. 34 (Database issue), D741-D744 https://doi.org/10.1093/nar/gkj094
  10. Mount, S.M. (1982) A catalogue of splice junction sequences. Nucleic Acids Res. 10, 459-469 https://doi.org/10.1093/nar/10.2.459
  11. Goodall, G.J. and Filipowicz, W. (1989) The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58, 473-483 https://doi.org/10.1016/0092-8674(89)90428-5
  12. Greene, J.M., Larin, Z., Taylor, I.C.A., Prentice, H., Gwinn, K.A., and Kingston, R.E. (1987) Multiple basal elements of a human hsp70 promoter function differently in human and rodent cell lines. Mol. Cell Biol. 7, 3646-3655 https://doi.org/10.1128/MCB.7.10.3646
  13. Gidoni, D., Dynan, W.S. and Tjian, R. (1984) Multiple specific contacts between a mammalian transcription factor and its cognate promoters. Nature 312, 409-413 https://doi.org/10.1038/312409a0
  14. Christy, B. and Nathans, D. (1989) DNA binding site of the growth factor-inducible protein Zif268. Proc. Natl. Acad. Sci. U.S.A. 86, 8737-8741
  15. Ferl, R.J. and Nick, H.S. (1987) In vivo detection of regulatory factor binding sites in the 5' flanking region of maize Adh1. J. Biol. Chem. 262, 7947-7950
  16. Katagiri, F., Ram, E. and Chua, N.H. (1989) Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature 340, 727-730 https://doi.org/10.1038/340727a0
  17. Maghuly, F., Khan, M.A., Fernandez, E.B., Druart, P., Watillon, B. and Laimer, M. (2008) Stress regulated expression of the GUS-marker gene (uidA) under the control of plant calmodulin and viral 35S promoters in a model fruit tree rootstock: Prunus incisa x serrula. J. Biotechnol. 135, 105-116 https://doi.org/10.1016/j.jbiotec.2008.02.021
  18. Agrawal, G.K., Pandy, R.N. and Agrawal, V.P. (1992) Isolation of DNA from Choerospondias axillaris leaves. Biotech. Biodiv. Lett. 2, 19-24
  19. Zhao, W., Wang, J., He, X., Huang, X., Jiao, Y., Dai, M., Wei, S., Fu, J., Chen, Y., Ren, X., Zhang, Y., Ni, P., Zhang, J., Li, S., Wang, J., Wong, G.K., Zhao, H., Yu, J. and Yang, H. and Wang, J. (2004) BGI-RIS: an integrated information resource and comparative analysis workbench for rice genomics. Nucleic Acids Res. 32, D377-D382 https://doi.org/10.1093/nar/gkh085
  20. Verwoerd, T.C., Dekker, B.M. and Hoekema, A. (1989) A small-scale procedure for the rapid isolation of plant RNAs. Nucl. Acids Res. 17, 2362 https://doi.org/10.1093/nar/17.6.2362
  21. Prestridge, D.S. (1995). Predicting Pol II promoter sequences using transcription factor binding sites. J. Mol. Biol. 249, 923-932 https://doi.org/10.1006/jmbi.1995.0349
  22. Li, L., Ou, R., de Kochkc, A., Fauquet, C. and Beachy, R.N. (1993) An improved rice transformation system using the biolistic method. Plant Cell Rep. 12, 250-255 https://doi.org/10.1007/BF00237129
  23. Jefferson, R.A., Burgess, S.M. and Hirsh, D. (1986) $\beta$-glucuronidase from Escherichia coli as a gene-fusion marker. Proc. Natl. Acad. Sci. U.S.A. 83, 8447-8451
  24. Toriyama, K. and Hinata, K. (1985) Cell suspension and protoplast culture in rice. Plant Sci. 41, 179-183 https://doi.org/10.1016/0168-9452(85)90086-X
  25. Liao, B. and Zielinski, R.E. (1995) Production of recombinant plant calmodulin and its use to detect calmodulinbinding proteins. Methods Cell Biol. 49, 487-500 https://doi.org/10.1016/S0091-679X(08)61475-2

피인용 문헌

  1. Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): The role of OsP5CS1 and OsP5CR gene expression during salt stress vol.86, 2013, https://doi.org/10.1016/j.envexpbot.2010.01.009
  2. Expression analysis of calmodulin and calmodulin-like genes from rice, Oryza sativa L. vol.5, pp.1, 2012, https://doi.org/10.1186/1756-0500-5-625
  3. Biophysical characterization of calmodulin and calmodulin-like proteins from rice, Oryza sativa L. vol.43, pp.11, 2011, https://doi.org/10.1093/abbs/gmr081
  4. Recombinant expression of Laceyella sacchari thermitase in Lactococcus lactis vol.92, pp.2, 2013, https://doi.org/10.1016/j.pep.2013.09.009
  5. The role of the OsCam1-1 salt stress sensor in ABA accumulation and salt tolerance in rice vol.55, pp.3, 2012, https://doi.org/10.1007/s12374-011-0154-8
  6. C-terminal extension of calmodulin-like 3 protein fromOryza sativaL.: interaction with a high mobility group target protein vol.47, pp.11, 2015, https://doi.org/10.1093/abbs/gmv097
  7. Proteomic analysis of transgenic rice overexpressing a calmodulin calcium sensor reveals its effects on redox signaling and homeostasis vol.26, pp.2, 2017, https://doi.org/10.1007/s13562-016-0386-2
  8. OsCaM1-1 overexpression in the transgenic rice mitigated salt-induced oxidative damage vol.63, pp.1, 2019, https://doi.org/10.32615/bp.2019.039