Advanced Phase Isolation Ditch 공정에 의한 하수 고도처리 성능평가

Performance Evaluation of Advanced Municipal Wastewater Treatment by Advanced Phase Isolation Ditch (APID) Process

  • 안상우 (한양대학교 토목공학과) ;
  • 곽성근 (태화강재산업(주)) ;
  • 윤영한 (한국건설기술연구원 국토환경연구부) ;
  • 정무근 (태화강재산업(주)) ;
  • 박재로 (한국건설기술연구원 국토환경연구부) ;
  • 박재우 (한양대학교 토목공학과)
  • An, Sang-Woo (Department of Civil Engineering, Hanyang University) ;
  • Kwak, Sung-Keun (Environmental Business Division, Taiwha Lease Industrial Co., Ltd) ;
  • Yoon, Yung-Han (Environmental Research Department, Korea Institute of Construction Technology) ;
  • Chung, Mu-Keun (Environmental Business Division, Taiwha Lease Industrial Co., Ltd) ;
  • Park, Jae-Roh (Environmental Research Department, Korea Institute of Construction Technology) ;
  • Park, Jae-Woo (Department of Civil Engineering, Hanyang University)
  • 투고 : 2007.11.13
  • 심사 : 2008.08.26
  • 발행 : 2008.09.30

초록

Advanced Phase Isolation Ditch (APID) process was studied to develop economic retrofitting technology, for the plants where retrofitting of common activated sludge process is required. In this study, to evaluate the effluent BOD, SS, T-N, and T-P concentrations as process capable and stable parameters for treating municipal wastewater, a demonstration plant was installed and operated in the existing sewage treatment plant of P city. During this study, the average effluent BOD, SS, T-N, and T-P concentrations were 4.56, 5.20, 9.30, and 1.75 mg/L at the conventional mode and 3.95, 3.17, 7.65, and 1.18 mg/L at the modified mode. The modified mode (BOD: 3.69, SS: 3.19, T-N: 1.27, and T-P: 0.69) increased the process capability more than the conventional mode (BOD: 1.80, SS: 1.05, T-N: 2.17, and T-P: 0.15) in this study. If process capability over 1.0, this process is capable and stable to treat wastewater. Therefore, newly developed APID process with modified intermittent aeration mode can be one of the useful processes for stable organic matter and nutrients removal.

키워드

참고문헌

  1. 고승곤, 황재문, 김응석(2001). 공정능력지수의 실무활용지침. 한국품질경영학회지, 2(1), pp. 23-33
  2. 동영탁, 서동환, 배유진, 박주석(2007). 질산화균 활성화조를 이용한 하수처리 공정에서의 유기물 및 질소, 인 제거에 관한 연구. 상하수도학회지, 21(6), pp. 727-735
  3. 서인석, 김연권, 김지연, 김홍석, 김병균, 최창규, 안효원 (2006). 멤브레인을 침지한 하수고도처리공법에서 기존 간헐포기와 개량간헐포기의 효율성 비교평가. 상하수도학회지, 20(2), pp. 257-264
  4. 유미정, 박창순(2004). 지속적으로 향상되는 공정에서 기하조정 관리한계를 사용한 X관리도. 한국품질경영학회지, 34(4), pp. 125-132
  5. 윤영한, 박재로, 안상우, 지재성(2007a). HASP 공정의 동역학적 질산화와 탈질산화 효율 연구. 대한토목학회논문집, 27(4B), pp. 469-474
  6. 윤영한, 안상우, 박재로, 고광백, 이효범, 지재성(2007b). 선택적 간헐포기 및 유입위치변경에 따른 생물반응조 내 질소거동 및 성능평가. 한국수처리학회지, 15(2), pp. 25-34
  7. 조일형, 조경덕, 안상우, 장순웅, 김영규(2006). 철석출장치에 의한 폐수 중의 인 제거 특성. 한국환경보건학회지, 32(1), pp. 89-95
  8. 한국환경기술진흥원(2002). 환경공학기술개발연구보고. 한국 환경기술진흥원
  9. 환경부(2006). 2006년 상반기 하수처리시설 지도점검결과. 환경부 생활하수과
  10. An, S. W., Park, J. W., Cho, I. H., Cang, S. W., Yoon, Y. H., and Park, J. R. (2007). Process evaluation of advanced wastewater treatment process with IMET system for statistical control. 14th International symposium on health-related water microbiology, Japan
  11. APHA, AWWA, and WPCF (1985). Standard Methods for the examination of water and wastwater, 16th ed., Washington D. C., USA
  12. Dixon, D., Gallop, J. R., Lamvert, S. C., Lardon, L., Healy, J. V., and Steyer, J. P. (2007). Data mining to support anaerobic WWTP monitoring. Control Engineering Practice, 15(8), pp. 987-999 https://doi.org/10.1016/j.conengprac.2006.11.010
  13. Grady, C. P. L., Daigger, G. T., and Lim, H. C. (1999). Biological wastewater treatment, 2nd ed., Marcel Dekker INC., New York
  14. Rieger, L., Thomann, M., Gujer, W., and Siegrist, H. (2005). Quantifying the uncertainty of on-line sensors at WWTPs during field operation. Water research, 39, pp. 5162-5174 https://doi.org/10.1016/j.watres.2005.09.040
  15. Puig, S., Corominas, L., Vives, M. T., Balaguer, M. D., Colprim, J., and Colomer, J. (2005). Development and implementation of a real-time control system for nitrogen removal using OUR and ORP as end points. Industrial & Engineering Chemistry Research, 44, pp. 3367-3373 https://doi.org/10.1021/ie0488851