PCNA Modifications for Regulation of Post-Replication Repair Pathways

  • Lee, Kyoo-young (Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health) ;
  • Myung, Kyungjae (Genome Instability Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health)
  • Received : 2008.06.02
  • Accepted : 2008.06.04
  • Published : 2008.07.31

Abstract

Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is catalyzed by Rad6/Rad18 complex. PCNA monoubiquitination triggers the replacement of replicative polymerase with special translesion synthesis (TLS) polymerases that are able to replicate past DNA lesions. The PCNA interaction motif and/or the ubiquitin binding motif in most TLS polymerases seem to be important for the regulation of TLS. The TLS pathway is usually error-prone because TLS polymerases have low fidelity and no proofreading activity. PCNA can also be further polyubiquitinated by Ubc13/ Mms2/Rad5 complex, which adds an ubiquitin chain onto monoubiquitinated K164 of PCNA. PCNA polyubiquitination directs a different PRR pathway known as error-free damage avoidance, which uses the newly synthesized sister chromatid as a template to bypass DNA damage presumably through template switching mechanism. Mammalian homologues of all of the yeast PRR proteins have been identified, thus PRR is well conserved throughout evolution. Mutations of some PRR genes are associated with a higher risk for cancers in mice and human patients, strongly supporting the importance of PRR as a tumor suppressor pathway.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Acharya, N., Brahma, A., Haracska, L., Prakash, L., and Prakash, S. (2007). Mutations in the ubiquitin binding UBZ motif of DNA polymerase eta do not impair its function in translesion synthesis during replication. Mol. Cell. Biol. 27, 7266-7272 https://doi.org/10.1128/MCB.01196-07
  2. Avkin, S., Sevilya, Z., Toube, L., Geacintov, N., Chaney, S.G. Oren, M., and Livneh, Z. (2006). p53 and p21 regulate error-prone DNA repair to yield a lower mutation load. Mol. Cell 22, 407-413
  3. Bailly, V., Lauder, S., Prakash, S., and Prakash, L. (1997). Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J. Biol. Chem. 272, 23360-23365 https://doi.org/10.1074/jbc.272.37.23360
  4. Barbour, L., and Xiao, W. (2003). Regulation of alternative replication bypass pathways at stalled replication forks and its effects on genome stability: a yeast model. Mutat. Res.532, 137- 155 https://doi.org/10.1016/j.mrfmmm.2003.08.014
  5. Bemark, M., Khamlichi, A.A., Davies, S.L., and Neuberger, M.S. (2000). Disruption of mouse polymerase zeta (Rev3). leads to embryonic lethality and impairs blastocyst development in vitro. Curr. Biol. 10, 1213-1216 https://doi.org/10.1016/S0960-9822(00)00724-7
  6. Bienko, M., Green, C.M., Crosetto, N., Rudolf, F., Zapart, G.I Coull, B., Kannouche, P., Wider, G., Peter, M., Lehmann, A.R., et al. (2005). Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310, 1821-1824 https://doi.org/10.1126/science.1120615
  7. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6-21 https://doi.org/10.1101/gad.947102
  8. Blastyak, A., Pinter, L., Unk, I., Prakash, L., Prakash, S.I and Haracska, L. (2007). Yeast Rad5 protein required for postreplication repair has a DNA helicase activity specific for replication fork regression. Mol. Cell 28, 167-175 https://doi.org/10.1016/j.molcel.2007.07.030
  9. Broomfield, S., Chow, B.L., and Xiao, W. (1998). MMS2, encoding a ubiquitin-conjugating-enzyme-like protein, is a member of the yeast error-free postreplication repair pathway. Proc. Natl. Acad. Sci. USA 95, 5678-5683
  10. Brun, J., Chiu, R., Lockhart, K., Xiao, W., Wouters, B.G.I and Gray, D.A. (2008). hMMS2 serves a redundant role in human PCNA polyubiquitination. BMC Mol. Biol. 9, 24 https://doi.org/10.1186/1471-2199-9-24
  11. Brusky, J., Zhu, Y., and Xiao, W. (2000). UBC13, a DNA-damageinducible gene, is a member of the error-free postreplication repair pathway in Saccharomyces cerevisiae. Curr. Genet. 37, 168-174 https://doi.org/10.1007/s002940050515
  12. Byun, T.S., Pacek, M., Yee, M.C., Walter, J.C., and Cimprich, K.A. (2005). Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint. Genes Dev. 19, 1040-1052 https://doi.org/10.1101/gad.1301205
  13. Chang, D.J., Lupardus, P.J., and Cimprich, K.A. (2006). Monoubiquitination of proliferating cell nuclear antigen induced by stalled replication requires uncoupling of DNA polymerase and mini-chromosome maintenance helicase activities. J. Biol. Chem. 281, 32081-32088 https://doi.org/10.1074/jbc.M606799200
  14. Chiu, R.K., Brun, J., Ramaekers, C., Theys, J., Weng, L.,Lambin, P., Gray, D.A., and Wouters, B.G. (2006). Lysine 63-polyubiquitination guards against translesion synthesis-induced mutations. PLoS Genet.2, e116 https://doi.org/10.1371/journal.pgen.0020116
  15. Choi, J.H., Besaratinia, A., Lee, D.H., Lee, C.S., and Pfeifer, G.P. (2006). The role of DNA polymerase iota in UV mutational spectra. Mutat. Res.599, 58-65 https://doi.org/10.1016/j.mrfmmm.2006.01.003
  16. Choi, J.Y., and Guengerich, F.P. (2006). Kinetic evidence for inefficient and error-prone bypass across bulky N2-guanine DNA adducts by human DNA polymerase iota. J. Biol. Chem. 281, 12315-12324 https://doi.org/10.1074/jbc.M600112200
  17. Cordonnier, A.M., and Fuchs, R.P. (1999). Replication of damaged DNA: molecular defect in xeroderma pigmentosum variant cells. Mutat. Res.435, 111-119 https://doi.org/10.1016/S0921-8777(99)00047-6
  18. Davies, A.A., Huttner, D., Daigaku, Y., Chen, S., and Ulrich, H.D. (2008). Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein a. Mol. Cell 29, 625-636 https://doi.org/10.1016/j.molcel.2007.12.016
  19. Dumstorf, C.A., Clark, A.B., Lin, Q., Kissling, G.E., Yuan, T., Kucherlapati, R., McGregor, W.G., and Kunkel, T.A.(2006). Participation of mouse DNA polymerase iota in strand-biased mutagenic bypass of UV photoproducts and suppression of skin cancer. Proc. Natl. Acad. Sci. USA 103, 18083-18088
  20. Esposito, G., Godindagger, I., Klein, U., Yaspo, M.L., Cumano, A., and Rajewsky, K. (2000). Disruption of the Rev3l-encoded catalytic subunit of polymerase zeta in mice results in early embryonic lethality. Curr. Biol. 10, 1221-1224 https://doi.org/10.1016/S0960-9822(00)00726-0
  21. Frampton, J., Irmisch, A., Green, C.M., Neiss, A., Trickey, M.I Ulrich, H.D., Furuya, K., Watts, F.Z., Carr, A.M., and Lehmann, A.R. (2006). Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol. Biol. Cell.17, 2976-2985 https://doi.org/10.1091/mbc.E05-11-1008
  22. Gangavarapu, V., Prakash, S., and Prakash, L. (2007). Requirement of RAD52 group genes for postreplication repair of UVdamaged DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 27, 7758-7764 https://doi.org/10.1128/MCB.01331-07
  23. Garg, P., and Burgers, P.M. (2005). Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1. Proc. Natl. Acad. Sci. USA 102, 18361-18366
  24. Guo, C., Fischhaber, P.L., Luk-Paszyc, M.J., Masuda, Y., Zhou, J.I. Kamiya, K., Kisker, C., and Friedberg, E.C.(2003). Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J. 22, 6621-6630 https://doi.org/10.1093/emboj/cdg626
  25. Guo, C., Tang, T.S., Bienko, M., Parker, J.L., Bielen, A.B.Sonoda, E., Takeda, S., Ulrich, H.D., Dikic, I., and Friedberg, E.C. (2006). Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol. Cell Biol. 26, 8892-8900 https://doi.org/10.1128/MCB.01118-06
  26. Haracska, L., Unk, I., Johnson, R.E., Johansson, E., Burgers, P.M., Prakash, S., and Prakash, L. (2001). Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev.15, 945-954 https://doi.org/10.1101/gad.882301
  27. Haracska, L., Torres-Ramos, C.A., Johnson, R.E., Prakash, S., and Prakash, L. (2004). Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol. Cell. Biol.24, 4267-4274 https://doi.org/10.1128/MCB.24.10.4267-4274.2004
  28. Haracska, L., Unk, I., Prakash, L., and Prakash, S. (2006). Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proc. Natl. Acad. Sci. USA 103, 6477-6482
  29. Hoege, C., Pfander, B., Moldovan, G.L., Pyrowolakis, G., and Jentsch, S. (2002). RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141 https://doi.org/10.1038/nature00991
  30. Hofmann, R.M., and Pickart, C.M. (1999). Noncanonical MMS2- encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645-653 https://doi.org/10.1016/S0092-8674(00)80575-9
  31. Huang, T.T., Nijman, S.M., Mirchandani, K.D., Galardy, P.J., Cohn, M.A., Haas, W., Gygi, S.P., Ploegh, H.L., Bernards, R., and D'Andrea, A.D.,(2006). Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat. Cell Biol. 8, 339-347
  32. Iyer, L.M., Babu, M.M., and Aravind, L. (2006). The HIRAN domain and recruitment of chromatin remodeling and repair activities to-496 damaged DNA. Cell Cycle 5, 775-782 https://doi.org/10.4161/cc.5.7.2629
  33. Jansen, J.G., Langerak, P., Tsaalbi-Shtylik, A., van den Berk, P., Jacobs, H.,and de Wind, N.,(2006). Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1- deficient mice. J. Exp. Med. 203, 319-323 https://doi.org/10.1084/jem.20052227
  34. Johnson, R.E., Henderson, S.T., Petes, T.D., Prakash, S., Bankmann, M.,and Prakash, L. (1992). Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol. Cell. Biol. 12, 3807- 3818 https://doi.org/10.1128/MCB.12.9.3807
  35. Johnson, R.E., Torres-Ramos, C.A., Izumi, T., Mitra, S., Prakash, S., and Prakash, L. (1998). Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites. Genes Dev. 12, 3137-3143 https://doi.org/10.1101/gad.12.19.3137
  36. Johnson, R.E., Kondratick, C.M., Prakash, S., and Prakash, L. (1999). hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285, 263-265 https://doi.org/10.1126/science.285.5425.263
  37. Johnson, R.E., Washington, M.T., Haracska, L., Prakash, S., and Prakash, L. (2000). Eukaryotic polymerases iota and zeta act sequentially to bypass DNA lesions. Nature 406, 1015-1019 https://doi.org/10.1038/35023030
  38. Kannouche, P., Fernandez de Henestrosa, A.R., Coull, B., Vidal, A.E., Gray, C., Zicha, D., Woodgate, R., and Lehmann, A.R. (2003). Localization of DNA polymerases eta and iota to the replication machinery is tightly co-ordinated in human cells. EMBO J. 22, 1223-1233 https://doi.org/10.1093/emboj/7595006
  39. Kannouche, P.L., Wing, J., and Lehmann, A.R. (2004). Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491-500 https://doi.org/10.1016/S1097-2765(04)00259-X
  40. Lawrence, C. (1994). The RAD6 DNA repair pathway in Saccharomyces cerevisiae: what does it do, and how does it do it? Bioessays NS, 253-258 https://doi.org/10.1002/bies.950160408
  41. Lawrence, C.W., Gibbs, P.E., Murante, R.S., Wang, X.D., Li, Z., McManus, T.P., McGregor, W.G., Nelson, J.R., Hinkle, D.C., and Maher, V.M. (2000). Roles of DNA polymerase zeta and Rev1 protein in eukaryotic mutagenesis and translesion replication. Cold Spring Harb. Symp. Quant. Biol. 65, 61-69
  42. Lawrence, C.W., O'Brien, T., and Bond, J. (1984). UV-induced reversion of his4 frameshift mutations in rad6, rev1, and rev3 mutants of yeast. Mol. Gen. Genet. 195, 487-490 https://doi.org/10.1007/BF00341451
  43. Lehmann, A.R., Niimi, A., Ogi, T., Brown, S., Sabbioneda, S., Wing, J.F., Kannouche, P.L., and Green, C.M. (2007). Translesion synthesis: Y-family polymerases and the polymerase switch. DNA Repair (Amst). 6, 891-899 https://doi.org/10.1016/j.dnarep.2007.02.003
  44. Li, Z., Xiao, W., McCormick, J.J., and Maher, V.M. (2002). Identification of a protein essential for a major pathway used by human cells to avoid UV- induced DNA damage. Proc. Natl. Acad. Sci. USA99, 4459-4464
  45. Masutani, C., Kusumoto, R., Yamada, A., Dohmae, N., Yokoi, M., Yuasa, M., Araki, M., Iwai, S., Takio, K., and Hanaoka, F.(1999). The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase eta. Nature 339, 700-704
  46. Masutani, C., Kusumoto, R., Iwai, S., and Hanaoka, F. (2000). Mechanisms of accurate translesion synthesis by human DNA polymerase eta. EMBO J. 19, 3100-3109 https://doi.org/10.1093/emboj/19.12.3100
  47. McCulloch, S.D., Kokoska, R.J., and Kunkel, T.A. (2004a). Efficiency, fidelity and enzymatic switching during translesion DNA synthesis. Cell Cycle 3, 580-583
  48. McCulloch, S.D., Kokoska, R.J., Masutani, C., Iwai, S., Hanaoka, F., and Kunkel, T.A. (2004b). Preferential cis-syn thymine dimer bypass by DNA polymerase eta occurs with biased fidelity. Nature 428, 97-100 https://doi.org/10.1038/nature02352
  49. McDonald, J.P., Levine, A.S., and Woodgate, R. (1997). The Saccharomyces cerevisiae RAD30 gene, a homologue of Escherichia coli dinB and umuC, is DNA damage inducible and functions in a novel error-free postreplication repair mechanism. Genetics 147, 1557-1568
  50. Motegi, A., Sood, R., Moinova, H., Markowitz, S.D., Liu, P.P., and Myung K.,(2006). Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. J. Cell Biol.175, 703-708 https://doi.org/10.1083/jcb.200606145
  51. Motegi, A., Liaw, H.J., Lee, K.Y., Roest, H.P., Mass, A.,et alK (2008). Lysine 63-linked polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc. Natl. Acad. Sci. USA(in press)
  52. Murakumo, Y., Ogura, Y., Ishii, H., Numata, S., Ichihara, M.,and Croce, C.M., Fishel, R., and Takahashi, M. (2001). Interactions in the error-prone postreplication repair proteins hREV1, hREV3, and hREV7. J. Biol. Chem.276, 35644-35651 https://doi.org/10.1074/jbc.M102051200
  53. Nelson, J.R., Lawrence, C.W., and Hinkle, D.C. (1996). Thyminethymine dimer bypass by yeast DNA polymerase zeta. Science 272, 1646-1649 https://doi.org/10.1126/science.272.5268.1646
  54. Nikolaishvili-Feinberg, N., Jenkins, G.S., Nevis, K.R., Staus, D.P., Scarlett, C.O., Unsal-Kacmaz, K., Kaufmann, W.K., and Cordeiro- Stone, M. (2008). Ubiquitylation of proliferating cell nuclear antigen and recruitment of human DNA polymerase eta. Biochemistry 47, 4141-4150 https://doi.org/10.1021/bi702329h
  55. Ogi, T., Kannouche, P., and Lehmann, A.R. (2005). Localisation of human Y-family DNA polymerase kappa: relationship to PCNA foci. J. Cell Sci. 118, 129-136 https://doi.org/10.1242/jcs.01603
  56. Ogi, T., and Lehmann, A.R. (2006). The Y-family DNA polymerase kappa (pol kappa). functions in mammalian nucleotide-excision repair. Nat. Cell Biol.8, 640-642 https://doi.org/10.1038/ncb1417
  57. Ogi, T., Ohashi, E., and Ohmori, H. (2001). Mutagenesis by Escherichia coli DinB and its mammalian homolog Pol kappa. Tanpakushitsu Kakusan Koso 46, 1155-1161
  58. Ohashi, E., Murakumo, Y., Kanjo, N., Akagi, J., Masutani, C.I Hanaoka, F., and Ohmori, H. (2004). Interaction of hREV1 with three human Y-family DNA polymerases. Genes Cells 9, 523- 531 https://doi.org/10.1111/j.1356-9597.2004.00747.x
  59. Otsuka, C., Kunitomi, N., Iwai, S., Loakes, D., and Negishi, K. (2005). Roles of the polymerase and BRCT domains of Rev1 protein in translesion DNA synthesis in yeast in vivo. Mutat Res. 578, 79-87 https://doi.org/10.1016/j.mrfmmm.2005.03.005
  60. Papouli, E., Chen, S., Davies, A.A., Huttner, D., Krejci, L.I Sung, P., and Ulrich, H.D. (2005). Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123-133 https://doi.org/10.1016/j.molcel.2005.06.001
  61. Parker, J.L., Bielen, A.B., Dikic, I., and Ulrich, H.D. (2007). Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase eta in Saccharomyces cerevisiae. Nucleic Acids Res.35, 881-889 https://doi.org/10.1093/nar/gkl1102
  62. Parrilla-Castellar, E.R., Arlander, S.J., and Karnitz, L. (2004). Dial 9- 1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1). clamp complex. DNA Repair (Amst). 3, 1009-1014 https://doi.org/10.1016/j.dnarep.2004.03.032
  63. Pfander, B., Moldovan, G.L., Sacher, M., Hoege, C., and Jentsch, S. (2005). SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428-433 https://doi.org/10.1038/nature03665
  64. Plosky, B.S., Vidal, A.E., Fernandez de Henestrosa, A.R., McLenigan, M.P., McDonald, J.P. Mead, S., and Woodgate, R. (2006). Controlling the subcellular localization of DNA polymerases iota and eta via interactions with ubiquitin. EMBO J. 25, 2847-2855 https://doi.org/10.1038/sj.emboj.7601178
  65. Prakash, S., Johnson, R.E., and Prakash, L. (2005). Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu. Rev. Biochem.74, 317-353 https://doi.org/10.1146/annurev.biochem.74.082803.133250
  66. Sogo, J.M., Lopes, M., and Foiani, M. (2002). Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599-602 https://doi.org/10.1126/science.1074023
  67. Sood, R., Makalowska, I., Galdzicki, M., Hu, P., Eddings, E.I Robbins, C.M., Moses, T., Namkoong, J., Chen, S., and Trent, J.M. (2003). Cloning and characterization of a novel gene, SHPRH, encoding a conserved putative protein with SNF2/helicase and PHD-finger domains from the 6q24 region. Genomics 82, 153- 161 https://doi.org/10.1016/S0888-7543(03)00121-6
  68. Soria, G., Podhajcer, O., Prives, C., and Gottifredi, V. (2006). P21Cip1/WAF1 downregulation is required for efficient PCNA ubiquitination after UV irradiation. Oncogene OR, 2829-2838 https://doi.org/10.1038/sj.onc.1209315
  69. Spence, J., Sadis, S., Haas, A.L., and Finley, D. (1995). A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol. 15, 1265-1273 https://doi.org/10.1128/MCB.15.3.1265
  70. Stelter, P., and Ulrich, H.D. (2003). Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188-191 https://doi.org/10.1038/nature01965
  71. Tercero, J.A., and Diffley, J.F. (2001). Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553-557 https://doi.org/10.1038/35087607
  72. Tissier, A., Frank, E.G., McDonald, J.P., Iwai, S., Hanaoka, F., and Woodgate, R. (2000). Misinsertion and bypass of thyminethymine dimers by human DNA polymerase iota. EMBO J. 19, 5259-5266 https://doi.org/10.1093/emboj/19.19.5259
  73. Tissier, A., Kannouche, P., Reck, M.P., Lehmann, A.R., Fuchs, R.P.I and Cordonnier, A. (2004). Co-localization in replication foci and interaction of human Y-family members, DNA polymerase pol eta and REVl protein. DNA Repair (Amst) 3, 1503-1514 https://doi.org/10.1016/j.dnarep.2004.06.015
  74. Ulrich, H.D., and Jentsch, S. (2000). Two RING finger proteins mediate cooperation between ubiquitin-conjugating enzymes in DNA repair. EMBO J. 19, 3388-3397 https://doi.org/10.1093/emboj/19.13.3388
  75. Unk, I., Hajdu, I., Fatyol, K., Szakal, B., Blastyak, A.,Bermudez, V., Hurwitz, J., Prakash, L., Prakash, S., and Haracska, L. (2006). Human SHPRH is a ubiquitin ligase for Mms2-Ubc13- dependent polyubiquitylation of proliferating cell nuclear antigen. Proc. Natl. Acad. Sci. USA 103, 18107-18112
  76. Unk, I., Hajdu, I., Fatyol, K., Hurwitz, J., Yoon, J.H., Prakash, L., Prakash, S., and Haracska, L. (2008). Human HLTF functions as a ubiquitin ligase for proliferating cell nuclear antigen polyubiquitination. Proc. Natl. Acad. Sci. USA 105, 3768-3773
  77. Washington, M.T., Johnson, R.E., Prakash, S., and Prakash, L. (2001). Mismatch extension ability of yeast and human DNA polymerase eta. J. Biol. Chem. 276, 2263-2266 https://doi.org/10.1074/jbc.M009049200
  78. Watanabe, K., Tateishi, S., Kawasuji, M., Tsurimoto, T., Inoue, H.I and Yamaizumi, M. (2004). Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 23, 3886-3896 https://doi.org/10.1038/sj.emboj.7600383
  79. Wittschieben, J., Shivji, M.K., Lalani, E., Jacobs, M.A., Marini, F.I Gearhart, P.J., Rosewell, I., Stamp, G., and Wood, R.D. (2000). Disruption of the developmentally regulated Rev3l gene causes embryonic lethality. Curr. Biol. 10, 1217-1220 https://doi.org/10.1016/S0960-9822(00)00725-9
  80. Wood, A., Garg, P., and Burgers, P.M. (2007). A ubiquitin-binding motif in the translesion DNA polymerase Rev1 mediates its essential functional interaction with ubiquitinated proliferating cell nuclear antigen in response to DNA damage. J. Biol. Chem. 282, 20256-20263 https://doi.org/10.1074/jbc.M702366200
  81. Yang, X.H., Shiotani, B., Classon, M., and Zou, L. (2008). Chk1 and Claspin potentiate PCNA ubiquitination. Genes Dev. 22, 1147- 1152 https://doi.org/10.1101/gad.1632808
  82. Zhang, H., and Lawrence, C.W. (2005). The error-free component of the RAD6/RAD18 DNA damage tolerance pathway of budding yeast employs sister-strand recombination. Proc. Natl. Acad. Sci. USA 102, 15954-15959
  83. Zhuang, Z., Johnson, R.E., Haracska, L., Prakash, L., Prakash, S., and Benkovic, S.J. (2008). Regulation of polymerase exchange between Poleta and Poldelta by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proc. Natl. Acad. Sci. USA 105, 5361-5366