DOI QR코드

DOI QR Code

Ectopic EBP2 expression enhances cyclin E1 expression and induces chromosome instability in HEK293 stable clones

  • Lee, Ming-Cheng (Institute of Molecular Medicine, College of Medicine, National Taiwan University) ;
  • Hsieh, Chang-Hsun (Institute of Molecular Medicine, College of Medicine, National Taiwan University) ;
  • Wei, Shu-Chen (Departments of Internal Medicine, National Taiwan University Hospital) ;
  • Shen, Shu-Chen (Departments of Medical Research, National Taiwan University Hospital) ;
  • Chen, Chiung-Nien (Departments of Surgery, National Taiwan University Hospital) ;
  • Wu, Vin-Cent (Departments of Internal Medicine, National Taiwan University Hospital) ;
  • Chuang, Li-Ying (Departments of Internal Medicine, National Taiwan University Hospital) ;
  • Hsieh, Fon-Jou (Departments of Obstetrics and Gynecology, National Taiwan University Hospital) ;
  • Wu, C. H. Herbert (Institute of Molecular Medicine, College of Medicine, National Taiwan University) ;
  • Tsai-Wu, Jyy-Jih (Departments of Medical Research, National Taiwan University Hospital)
  • Published : 2008.10.31

Abstract

To explore the effects of deregulated expression of the EBNA1 binding protein 2 (EBP2) on cell growth, we generated human HEK293 stable clones constitutively expressing an EBP2-EGFP fusion protein. We found both RNA and protein levels of cyclin E1, a dominant oncoprotein, were elevated in the EBP2- EGFP stable clones. These findings were confirmed by flow cytometry bivariate analysis of cyclin expression versus DNA content. Moreover, the increase in p21 expression and the specific phosphorylation at Ser1981 of ATM and Ser15 of p53 were also observed in these stable clones, and these observations may explain the failure to observe an increase in Cdk2 kinase activity. In addition, after one year of passage culture, the EBP2-EGFP stable clones tended to lose 4 to 5 chromosomes per cell when compared to that of control cells. All of these findings provide a possible link between deregulated expression of EBP2 and tumor development.

Keywords

References

  1. Chatterjee, A., Freeman, J.W. and Busch, H. (1987) Identification and partial characterization of a Mr 40,000 nucleolar antigen associated with cell proliferation. Cancer Res. 47, 1123-1129
  2. Shire, K., Ceccarelli, D.F., Avolio-Hunter, T.M. and Frappier, L. (1999) EBP2, a human protein that interacts with sequences of the Epstein-Barr virus nuclear antigen 1 important for plasmid maintenance. J. Virol. 73, 2587- 2595
  3. Reimers, K., Antoine, M., Zapatka, M., Blecken, V., Dickson, C. and Kiefer, P. (2001) NoBP, a nuclear fibroblast growth factor 3 binding protein, is cell cycle regulated and promotes cell growth. Mol. Cell. Biol. 21, 4996-5007 https://doi.org/10.1128/MCB.21.15.4996-5007.2001
  4. Huber, M.D., Dworet, J.H., Shire, K., Frappier, L. and McAlear, M.A. (2000) The budding yeast homolog of the human EBNA1-binding protein 2 (Ebp2p) is an essential nucleolar protein required for pre-rRNA processing. J. Biol. Chem. 275, 28764-28773 https://doi.org/10.1074/jbc.M000594200
  5. Tsujii, R., Miyoshi, K., Tsuno, A., Matsui, Y., Toh-e, A., Miyakawa, T. and Mizuta, K. (2000) Ebp2p, yeast homologue of a human protein that interacts with Epstein-Barr virus nuclear antigen 1, is required for pre-rRNA processing and ribosomal subunit assembly. Genes Cells. 5, 543-553 https://doi.org/10.1046/j.1365-2443.2000.00346.x
  6. Kapoor, P., Lavoie, B.D. and Frappier, L. (2005) EBP2 plays a key role in Epstein-Barr virus mitotic segregation and is regulated by aurora family kinases. Mol. Cell. Biol. 25, 4934-4945 https://doi.org/10.1128/MCB.25.12.4934-4945.2005
  7. Bayani, J., Selvarajah, S., Maire, G., Vukovic, B., Al- Romaih, K., Zielenska, M. and Squire, J.A. (2007) Genomic mechanisms and measurement of structural and numerical instability in cancer cells. Semin. Cancer Biol. 17, 5-18 https://doi.org/10.1016/j.semcancer.2006.10.006
  8. Suganuma, M., Kuzuhara, T., Yamaguchi, K. and Fujiki, H. (2006) Carcinogenic role of tumor necrosis factor-alpha inducing protein of Helicobacter pylori in human stomach. J. Biochem. Mol. Biol. 39, 1-8 https://doi.org/10.5483/BMBRep.2006.39.1.001
  9. Carroll, P.E., Okuda, M., Horn, H.F., Biddinger, P., Stambrook, P.J., Gleich, L.L., Li, Y.Q., Tarapore, P. and Fukasawa, K. (1999) Centrosome hyperamplification in human cancer: chromosome instability induced by p53 mutation and/or Mdm2 overexpression. Oncogene. 18, 1935- 1944 https://doi.org/10.1038/sj.onc.1202515
  10. Kawamura, K., Izumi, H., Ma, Z., Ikeda, R., Moriyama, M., Tanaka, T., Nojima, T., Levin, L.S., Fujikawa-Yamamoto, K., Suzuki, K. and Fukasawa, K. (2004) Induction of centrosome amplification and chromosome instability in human bladder cancer cells by p53 mutation and cyclin E overexpression. Cancer Res. 64, 4800-4809 https://doi.org/10.1158/0008-5472.CAN-03-3908
  11. Loeb, K.R., Kostner, H., Firpo, E., Norwood, T., K, D.T., Clurman, B.E. and Roberts, J.M. (2005) A mouse model for cyclin E-dependent genetic instability and tumorigenesis. Cancer Cell. 8, 35-47 https://doi.org/10.1016/j.ccr.2005.06.010
  12. Ortega, S., Prieto, I., Odajima, J., Martin, A., Dubus, P., Sotillo, R., Barbero, J.L., Malumbres, M. and Barbacid, M. (2003) Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nat. Genet. 35, 25-31 https://doi.org/10.1038/ng1232
  13. Geng, Y., Yu, Q., Sicinska, E., Das, M., Schneider, J.E., Bhattacharya, S., Rideout, W.M., Bronson, R.T., Gardner, H. and Sicinski, P. (2003) Cyclin E ablation in the mouse. Cell 114, 431-443 https://doi.org/10.1016/S0092-8674(03)00645-7
  14. Spruck, C.H., Won, K.A. and Reed, S.I. (1999) Deregulated cyclin E induces chromosome instability. Nature 401, 297-300 https://doi.org/10.1038/45836
  15. Hwang, H.C. and Clurman, B.E. (2005) Cyclin E in normal and neoplastic cell cycles. Oncogene 24, 2776-2786 https://doi.org/10.1038/sj.onc.1208613
  16. Minella, A.C., Swanger, J., Bryant, E., Welcker, M., Hwang, H. and Clurman, B.E. (2002) p53 and p21 form an inducible barrier that protects cells against cyclin E-cdk2 deregulation. Curr. Biol. 12, 1817-1827 https://doi.org/10.1016/S0960-9822(02)01225-3
  17. Giaccia, A.J. and Kastan, M.B. (1998) The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12, 2973-2983 https://doi.org/10.1101/gad.12.19.2973
  18. Moroy, T. and Geisen, C. (2004) Cyclin E. Int. J. Biochem. Cell. Biol. 36, 1424-1439 https://doi.org/10.1016/j.biocel.2003.12.005
  19. Nguyen Tle, X. and Ahn, J.Y. (2007) Lipase inactive mutant of PLC-gamma1 regulates NGF-induced neurite outgrowth via enzymatic activity and regulation of cell cycle regulatory proteins. J. Biochem. Mol. Biol. 40, 888-894 https://doi.org/10.5483/BMBRep.2007.40.6.888
  20. Hanahan, D. and Weinberg, R.A. (2000) The hallmarks of cancer. Cell 100, 57-70 https://doi.org/10.1016/S0092-8674(00)81683-9
  21. Schraml, P., Bucher, C., Bissig, H., Nocito, A., Haas, P., Wilber, K., Seelig, S., Kononen, J., Mihatsch, M.J., Dirnhofer, S. and Sauter, G. (2003) Cyclin E overexpression and amplification in human tumours. J. Pathol. 200, 375-382 https://doi.org/10.1002/path.1356
  22. Cheng, K.C. and Loeb, L.A. (1993) Genomic instability and tumor progression: mechanistic considerations. Adv. Cancer Res. 60, 121-156 https://doi.org/10.1016/S0065-230X(08)60824-6
  23. Duensing, A., Liu, Y., Tseng, M., Malumbres, M., Barbacid, M. and Duensing, S. (2006) Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene 25, 2943-2949 https://doi.org/10.1038/sj.onc.1209310
  24. Matsumoto, Y. and Maller, J.L. (2004) A centrosomal localization signal in cyclin E required for Cdk2-independent S phase entry. Science 306, 885-888 https://doi.org/10.1126/science.1103544
  25. Geng, Y., Lee, Y.M., Welcker, M., Swanger, J., Zagozdzon, A., Winer, J.D., Roberts, J.M., Kaldis, P., Clurman, B.E. and Sicinski, P. (2007) Kinase-independent function of cyclin E. Mol. Cell 25, 127-139 https://doi.org/10.1016/j.molcel.2006.11.029
  26. Gong, J., Ardelt, B., Traganos, F. and Darzynkiewicz, Z. (1994) Unscheduled expression of cyclin B1 and cyclin E in several leukemic and solid tumor cell lines. Cancer Res. 54, 4285-4288
  27. Mazumder, S., Gong, B., Chen, Q., Drazba, J.A., Buchsbaum, J.C. and Almasan, A. (2002) Proteolytic cleavage of cyclin E leads to inactivation of associated kinase activity and amplification of apoptosis in hematopoietic cells. Mol. Cell. Biol. 22, 2398-2409 https://doi.org/10.1128/MCB.22.7.2398-2409.2002
  28. Abbondanzo, S.J., Gadi, I. and Stewart, C.L. (1993) Derivation of embryonic stem cell lines. Methods Enzymol. 225, 803-823 https://doi.org/10.1016/0076-6879(93)25052-4

Cited by

  1. HEK293 in cell biology and cancer research: phenotype, karyotype, tumorigenicity, and stress-induced genome-phenotype evolution vol.569, pp.2, 2015, https://doi.org/10.1016/j.gene.2015.05.065
  2. A positive feedback loop between EBP2 and c-Myc regulates rDNA transcription, cell proliferation, and tumorigenesis vol.5, pp.1, 2014, https://doi.org/10.1038/cddis.2013.536
  3. Live-Cell Imaging Reveals Multiple Interactions between Epstein-Barr Virus Nuclear Antigen 1 and Cellular Chromatin during Interphase and Mitosis vol.86, pp.9, 2012, https://doi.org/10.1128/JVI.06303-11