DOI QR코드

DOI QR Code

Effects of Enzyme Supplementation on Growth, Intestinal Content Viscosity, and Digestive Enzyme Activities in Growing Pigs Fed Rough Rice-based Diet

  • Wang, M.Q. (Animal Science College of Zhejiang University, and the Key Laboratory of Molecular Animal Nutrition Ministry of Education) ;
  • Xu, Z.R. (Animal Science College of Zhejiang University, and the Key Laboratory of Molecular Animal Nutrition Ministry of Education) ;
  • Sun, J.Y. (Animal Science College of Zhejiang University, and the Key Laboratory of Molecular Animal Nutrition Ministry of Education) ;
  • Kim, B.G. (Department of Animal and Food Sciences, University of Kentucky)
  • Received : 2007.05.19
  • Accepted : 2007.07.22
  • Published : 2008.02.01

Abstract

The purpose of the present study was to investigate the effects of exogenous non-starch polysaccharides (NSP) enzymes on performance, intestinal content viscosity and digestive enzyme activities of growing pigs fed a rough rice-based diet. A total of 60 crossbred barrows with an initial body weight of 35.16 kg (SD = 0.82) were blocked by body weight and randomly assigned to two treatments with three replications. Each group was fed the diet based on rice with or without exogenous NSP enzymes (2 g/kg of diet). During the 70 days of the feeding trial, all pigs were given free access to feed and water. At the end of the feeding trial, six pigs from each treatment were randomly selected and slaughtered to collect intestinal digesta, intestinal mucosa, and pancreas. The addition of NSP enzymes improved average daily gain (p<0.05) and feed:gain (p<0.05), and decreased viscosity of digesta in the jejunum (p<0.001) and ileum (p<0.01) of pigs. The supplementation of NSP enzymes increased activities of protease (p<0.01), trypsin (p<0.01) and ${\alpha}$-amylase (p<0.05) in duodenal contents. However, digestive enzymes in the pancreas, jejunal and ileal mucosa were unaffected by the supplemental NSP enzymes (p>0.10). The results indicate that the addition of NSP enzymes to rough rice-based diets improved performance of pigs, reduced viscosity and increased digestive activity in the small intestine.

Keywords

References

  1. Alpers, D. H. and F. J. Tedesco. 1975. The possible role of pancreatic proteases in the turnover of intestinal brush border proteins. Biochim. Biophys. Acta. 401:28-40. https://doi.org/10.1016/0005-2736(75)90338-7
  2. AOAC. 1995. Official Methods of Analysis. 16th ed. Assoc. Off. Anal. Chem., Arlington, VA.
  3. Baas, T. C. and P. A. Thacker. 1996. Impact of gastric pH on dietary enzyme activity and survivability in swine fed $\beta$- glucanase supplemented diets. Can. J. Anim. Sci. 76:245-252. https://doi.org/10.4141/cjas96-036
  4. Bailey, M. J. and K. Poutanen. 1989. Production of xylanolytic enzymes by strains of Aspergillus. Appl. Microbiol. Biotechnol. 30:5-10.
  5. Bedford, M. R., J. F. Patience, H. L. Classen and J. Inborr. 1992. The effect of dietary enzyme supplementation of rye- and barley-based diets on digestion and subsequent performance in weanling pigs. Can. J. Anim. Sci. 72:97-105. https://doi.org/10.4141/cjas92-011
  6. Brannon, P. M. 1990. Adaptation of the exocrine pancreas to diet. Ann. Rev. Nutr. 10:85-105. https://doi.org/10.1146/annurev.nu.10.070190.000505
  7. Chesson, A. 1993. Feed enzymes. Anim. Feed Sci. Technol. 45:65-79. https://doi.org/10.1016/0377-8401(93)90072-R
  8. Chiang, C. C., B. Yu and P. W. Chiou. 2005. Effects of xylanase supplementation to wheat-based diet on the performance and nutrient availability of broiler chickens. Asian-Aust. J. Anim. Sci. 18:1141-1146. https://doi.org/10.5713/ajas.2005.1141
  9. Choct, M. and G. Annison. 1992. Anti-Nutritive effect of wheat pentosans in broiler chickens: roles of viscosity and gut microflora. Br. Poult. Sci. 33:821-834. https://doi.org/10.1080/00071669208417524
  10. Dahlqvist, A. 1964. Method for assay of intestinal disaccharidase. Anal. Biochem. 7:18-25. https://doi.org/10.1016/0003-2697(64)90115-0
  11. Danicke, S., G. Dusel, H. Jeroch and H. Kluge. 1999. Factors affecting efficiency of NSP-degrading enzymes in rations for pigs and poultry. Agribiol. Res. 52:1-24.
  12. Diebold, G., R. Mosenthin, H. P. Piepho and W. C. Sauer. 2004. Effect of supplementation of xylanase and phospholipase to a wheat-based diet for weanling pigs on nutrient digestibility and concentrations of microbial metabolites in ileal digesta and feces. J. Anim. Sci. 82:2647-2656. https://doi.org/10.2527/2004.8292647x
  13. Ensminger, A. H., M. E. Ensminger, J. E. Konlande and J. R. K. Robson. 1983. Foods and Nutrition Encyclopedia. Vol. 2. Pegus Press, Clovis, CA, USA, pp. 1928-1943
  14. Erfle, J. D., R. M. Teather, R. M. Wood and J. E. Irvin. 1988. Purification and properties of a 1,3-1,4-$\beta$-D-glucanase (lichenase, 1,3-1,4-$\beta$-D-glucanohydrolase, EC3.2.1.73) from bacteroides saccinogenes cloned in E. coli. Biochem. J. 255:833-841 https://doi.org/10.1042/bj2550833
  15. Erlanger, B. F., F. Edel and A. G. Cooper. 1966. The action of chymotrypsin on two new chromogenic substrates. Arch. Biochem. Biophys. 115:206-210. https://doi.org/10.1016/S0003-9861(66)81058-5
  16. Erlanger, B. F., N. Kokowsky and W. Cohen. 1961. The preparation and properties of two new chromogenic substrate of trypsin. Arch. Biochem. Biophys. 95:271-278. https://doi.org/10.1016/0003-9861(61)90145-X
  17. Erlanson-Albertsson, C., A. Larsson and R. Duan. 1987. Secretion of pancreatic lipase and colipase from rat pancreas. Pancreas 2:531-535. https://doi.org/10.1097/00006676-198709000-00007
  18. Graham, H., W. Lowgren, D. Pettersson and P. Aman. 1988. Effect of enzyme supplementation on digestion of a barley/pollardbased pig diet. Nutr. Rep. Int. 38:1073-1079.
  19. Heitlinger, L. A. 1991. Glucose flux from dietary disaccharides: all sugars are not absorbed at equal rates. Am. J. Physiol. 261:818-822.
  20. Henry, R. J. 1985. A comparison of the non-starch carbohydrates in creal grains. J. Sci. Food. Agric. 36:1243-1253. https://doi.org/10.1002/jsfa.2740361207
  21. Henry, R. J. 1984. A simplified enzymic method for the determination of 1,3-1,4-$\beta$-glucans in barley. J. Inst. Brew. 90:178-180. https://doi.org/10.1002/j.2050-0416.1984.tb04259.x
  22. Hopwood, D. E., D. W. Pethick, J. R. Pluske and D. J. Hampson. 2004. Addition of pearl barley to a rice-based diet for newly weaned piglets increases the viscosity of the intestinal contents, reduces starch digestibility and exacerbates post-weaning colibacillosis. Br. J. Nutr. 92:419-427. https://doi.org/10.1079/BJN20041206
  23. Ikegami, S., F. Tsnchihashi, H. Harada, N. Tsuchihashi, E. Nishide and S. Innami. 1990. Effects of viscous indigestible polysaccharides on pancreatic-biliary secretion and digestive organs in rats. J. Nutr. 120:353-360. https://doi.org/10.1093/jn/120.4.353
  24. Inborr, J. and M. R. Bedford. 1994. Stability of feed enzymes to steam pelleting during feed processing. Anim. Feed Sci. Technol. 46:179-196. https://doi.org/10.1016/0377-8401(94)90138-4
  25. Inborr, J., M. Schmitz and F. Ahrens. 1993. Effect of adding fiber and starch degrading enzymes to a barley/wheat based diet on performance and nutrient digestibility in different segments of the small intestine of early weaned pigs. Anim. Feed Sci. Technol. 44:113-127. https://doi.org/10.1016/0377-8401(93)90042-I
  26. Iwamori, M., Y. Iwamori and N. Ito. 1997. Sulfated lipids as inhibitors of pancreatic trypsin and chymotrypsin in epithelium of the mammalian digestive tract. Biochem. Biophys. Res. Commun. 237:262-265. https://doi.org/10.1006/bbrc.1997.7128
  27. Jensen, M. S., K. E. Bach Knudsen, J. Inborr and K. Jakobsen. 1998. Effect of $\beta$-glucanase supplementation on pancreatic enzyme activity and nutrient digestibility in piglets fed diets based on hulled and hulless barley varieties. Anim. Feed Sci. Technol. 72:329-345. https://doi.org/10.1016/S0377-8401(97)00187-9
  28. Jensen, M. S., M. J. Thaela, S. G. Pierzynowski and K. Jakobsen. 1996. Exocrine pancreatic secretion in young pigs fed barley-based diets supplemented with beta-glucanase. J. Anim. Physiol. Anim. Nutr. 75:231-241. https://doi.org/10.1111/j.1439-0396.1996.tb00486.x
  29. Kern, H. F., U. Rausch and G. A. Scheele. 1987. Regulation of gene expression in pancreatic adaptation to nutritional substrates or hormones. Gut 28 (Suppl.):89-94. https://doi.org/10.1136/gut.28.Suppl.89
  30. Kim, B. G., J. Z. Tian, J. S. Lim, D. Y. Kil, H. Y. Jeon, Y. K. Chung and Y. Y. Kim. 2004. The influences of enzyme complex supplementation on growth, ileal and apparent fecal digestibility, and morphology of small intestine in pigs. Asian-Aust. J. Anim. Sci. 17:1729-1735. https://doi.org/10.5713/ajas.2004.1729
  31. Lindberg, J. E., A. Arvidsson and J. Wang. 2003. Influence of naked barley cultivar with normal, amylase-rich or amylopectin-rich starch and enzyme supplementation on digestibility and piglet performance. Anim. Feed Sci. Technol. 104:121-131. https://doi.org/10.1016/S0377-8401(0
  32. Li, W. F., J. Y. Sun and Z. R. Xu. 2004. Effect of NSP degrading enzyme on in vitro digestion of barley. Asian-Aust. J. Anim. Sci. 17:122-126. https://doi.org/10.5713/ajas.2004.122
  33. Li, X. L., S. L. Yuan, X. S. Piao, C. H. Lai, J. J. Zang, Y. H. Ding, L. J. Han and In K. Han. 2006. The nutritional value of brown rice and maize for growing pigs. Asian-Aust. J. Anim. Sci. 19:892-897. https://doi.org/10.5713/ajas.2006.892
  34. Lowe, S. E., M. K. Theodorou and A. P. Trinci. 1987. Cellulase and xylanase of an anaerobic rumen fugus grown on wheat straw, wheat straw holocellulose, cellulose, xylan. Appl. Environ. Microbiol. 53:1216-1223.
  35. NRC. 1998. Nutrient Requirements of Swine. 10th ed. Natl. Acad. Press, Washington, DC.
  36. Omogbenigun, F. O., C. M. Nyachoti and B. A. Slominski. 2004. Dietary supplementation with multienzyme preparations improves nutrient utilization and growth performance in weaned pigs. J. Anim. Sci. 82:1053-1061. https://doi.org/10.2527/2004.8241053x
  37. Partridge, G. G. 2001. The role and efficacy of carbohydrase enzymes in pig nutrition (Ed. M. R. Bedford and G. G. Partridge), Enzymes in Farm Animal Nutrition., CAB International, pp. 161-198
  38. SAS (Statistical Analysis System Inc.). 1989. SAS/STAT User's Guide, Version 6. SAS Institute Inc., Cary, NC
  39. Schneeman, B. O., B. D. Richter and L. R. Jacobs. 1982. Response to dietary wheat bran in the exocrine pancreas and intestine of rats. J. Nutr. 112:283-286. https://doi.org/10.1093/jn/112.2.283
  40. Schram, E., S. Moore and E. W. Bigwood. 1954. Chromatographic determination of cystine as cystic acid. Biochem. J. 57:33-37. https://doi.org/10.1042/bj0570033
  41. Sell, J. L., O. Koldovsky and B. L. Reid. 1989. Intestinal disaccharidases of young tuckeys: temporal development and influence of diet composition. Poult. Sci. 68:265-277. https://doi.org/10.3382/ps.0680265
  42. Shen, T. and J. A. Wang. 1990. Biochemistry. High Educational Press, Beijing, pp. 232-233.
  43. Stock-Damge, C., M. Aprahamian, F. Raul, W. Humbert and P. Bouchet. 1984. Effects of wheat bran on the exocrine pancreas and the small intestinal mucosa in the dog. J. Nutr. 114:1076-1082. https://doi.org/10.1093/jn/114.6.1076
  44. Thacker, P. A., G. L. Campbell and J. Grootwassink. 1991. The effect of enzyme supplementation on the nutritive value of ryebased diets for swine. Can. J. Anim. Sci. 71:489-496. https://doi.org/10.4141/cjas91-058
  45. Thomsen, L. L. and C. Tasman-Jones. 1982. Disaccharidase levels of the rat jejunum are altered by dietary fibre. Digestion 23:253-258. https://doi.org/10.1159/000198758
  46. Yin, Y. L., J. D. McEvoy, H. Schulze, W. B. Souffrant, U. Hennig and K. J. McCracken. 2000. Apparent digestibility (ileal and overall) of nutrients and endogenous nitrogen losses in growing pigs fed wheat (var. Soissons) or its by-products without or with xylanase supplementation. Livest. Prod. Sci. 62:119-132. https://doi.org/10.1016/S0301-6226(99)00129-3
  47. Yin, Y. L., S. K. Baidoo, L. Z. Jin, Y. G. Liu, H. Schulze and P. H. Simmins. 2001. The effect of different carbohydrase and protease supplementation on apparent (ileal and overall) digestibility of nutrients of five hulless barley varieties in young pigs. Livest. Prod. Sci. 71:109-120. https://doi.org/10.1016/S0301-6226(01)00215-9
  48. Yin, Y. L., Z. Y. Deng, H. L. Huang, H. Y. Zhong, Z. P. Hou, J. Gong and Q. Liu. 2004a. Nutritional and health functions of carbohydrate for pigs. J. Anim. Feed Sci. 13: 523-538.
  49. Yin, Y. L., Z. Y. Deng, H. L. Huang, T. J. Li and H. Y. Zhong. 2004b. The effect of arabinoxylanase and protease supplementation on nutritional value of diets containing wheat bran or rice bran in growing pigs. J. Anim. Feed Sci. 13:445-461
  50. Zebrowska, T. and A. G. Low. 1987. The influence of diets based on whole wheat, wheat flour and wheat bran on exocrine pancreatic secretion in pigs. J. Nutr. 117:1212-1216 https://doi.org/10.1093/jn/117.7.1212

Cited by

  1. Effects of whole-grain paddy rice replacement with or without enzyme addition on broiler performance and intestinal morphology vol.55, pp.5, 2014, https://doi.org/10.1080/00071668.2014.950555
  2. Proteome changes in the small intestinal mucosa of growing pigs with dietary supplementation of non-starch polysaccharide enzymes vol.15, pp.1, 2016, https://doi.org/10.1186/s12953-016-0109-6
  3. Unraveling the Nexus: Exploring the Pathways to Combined Resource Use pp.10881980, 2019, https://doi.org/10.1111/jiec.12733
  4. Effects of exogenous multienzyme complex supplementation in diets on growth performance, digestive enzyme activity and non‐specific immunity of the Japanese seabass, Lateolabrax japonicus vol.26, pp.2, 2008, https://doi.org/10.1111/anu.12991