Steady-state Simulation and Energy-saving Optimization of Monoethylene Glycol Production Process

모노에틸렌 글리콜 생산공정의 정상상태 모사 및 에너지 절약 최적화 연구

  • 김태기 (인하대학교 공과대학 화학공학과) ;
  • 전인철 (재능대학 화장품과) ;
  • 정성택 (인하대학교 공과대학 화학공학과)
  • Received : 2008.02.21
  • Accepted : 2008.04.14
  • Published : 2008.10.31

Abstract

This study was undertaken for the production capacity expansion and energy saving through entire process simulation and optimization for the commercial process of manufacturing monoethylene glycol as a staple from ethylene oxide. Aspen $Plus^{TM}$(ver. 2006) was employed in the simulation and optimization work. The multicomponent vapor-liquid equilibria involved in the process were calculated using the NRTL-RK equation. As for the binary interaction parameters required for a total of 91 binary systems, those for 8 systems were self-supplied by the simulator, those for 28 systems were estimated through regression of the VLE data in the literature, and the remainder were estimated with the estimation system built in the simulator. Subsequent to ascertaining the accuracy of the generated parameters through comparison between actual and simulated process data, sensitive variables highly affecting the process were searched and selected using sensitivity analysis tool in the simulator. The optimum operating conditions minimizing the total heat duty of the process were investigated using the optimization tool based on the successive quadratic programming in the simulator.

본 연구는 ethylene oxide로부터 monoethylene glycol을 주제품으로 생산하는 상용화된 실제 공정의 생산 능력 증가시에 필요한 공정 모사와 에너지 절감을 위한 최적화 연구로서, 공정에 관여하는 다성분계의 기/액 상평형 거동을 NRTL-RK식으로 나타내고, 필요한 총 91개의 2성분계쌍의 상호작용 파라미터 값들로는 8개의 2성분계쌍에 대해서는 Aspen $Plus^{TM}$ 상용 모사기(Ver. 2006)에 내장된 값, 28개의 쌍에 대해서는 상평형 데이터를 문헌에서 조사하여 회귀분석하고 나머지 2성분계에 대해서는 모사기 내의 추산 기능을 이용하여 구한 값을 사용하였으며, 공정 모사 결과와 실제 공정 데이터와의 비교를 통해 상평형 계산의 정확성을 확인한 후, 모사기에 내장된 민감도 분석 기능을 사용하여 전체 에너지 소모량에 대한 각 장치의 민감도를 조사하여 적절한 조절변수를 선정하고 모사기 내에 내장되어 있는 순차적 2차 계획법에 의한 최적화 기능을 이용하여 공정 전체의 에너지 절약을 위한 최적화 작업을 수행하였다.

Keywords

References

  1. Peters, M. S., Timmerhaus, K. D. and West, R. E., Plant design and Economics for Chemical Engineers, 5th ed., McGRAW-HILL, New York, 335-392(2003)
  2. Jang, K. S., "Plant-wide Optimization of a TPA Process Using Simulator," M. A Dissertation, Pohang University of Science and Technology, Pohang(2004)
  3. Seider, W. D., Seader, J. D. and Lewin, D. R., Product & Process Design Principles, 2nd ed., WILEY, New York, 45-48(2004)
  4. Takahashi, S., Song, K. Y. and Kobayashi, R., "Experimental Vapor-Liquid Equilibria in the $CO_2$-Diethylene Glycol-$H_2O$ and $CO_2$-Triethylene Glycol-$H_2O$ Systems at Feasible Absorption Temperatures and Pressures," J. Chem. Eng. Data, 29, 23-28(1984) https://doi.org/10.1021/je00035a010
  5. Fredenslund, A. and Sather, G. A., "Gas-liquid Equilibrium of Oxygen-Carbon Dioxide System," J. Chem. Eng. Data, 17, 440-443(1972) https://doi.org/10.1021/je60055a019
  6. Zhang, S., Tsuboi, A., Nakata, H. and Ishikawa, T., "Infinite Dilution Activity Coefficients in Ethylene Glycol and Ethylene Carbonate," J. Chem. Eng. Data, 48, 167-170(2003) https://doi.org/10.1021/je0102107
  7. Bae, H. K., Nagahama, K. and Hirata, M., "Isothermal Vapor-Liquid Equilibria for The Ethylene-Carbon Dioxide System at High Pressure," J. Chem. Eng. Data, 27, 25-27(1982) https://doi.org/10.1021/je00027a007
  8. Davalos, J., Anderson, W. R., Phelps, R. E. and Kidnay, A. J., "Liquid-Vapor Equilibria at 250.00 K for Systems Containing Methane, Ethane, and Carbon Dioxide," J. Chem. Eng. Data, 21, 81-84(1976) https://doi.org/10.1021/je60068a030
  9. Spano, J. O., Heck C. K. and Barrick, P. L., "Liquid-Vapor Equilibria of the Hydrogen-Carbon Dioxide System," J. Chem. Eng. Data, 13, 168-171(1968) https://doi.org/10.1021/je60037a007
  10. Somait, F. A. and Kidnay, A. J., "Liquid-Vapor Equilibria at 270.00 K for Systems Containing Nitrogen, Methane, and Carbon Dioxide," J. Chem. Eng. Data, 23, 301-305(1978) https://doi.org/10.1021/je60079a019
  11. Stryjek, R., Chappelear P. S. and Kobayashi, R., "Low-Temperature Vapor-Liquid Equilibria of Nitrogen-Methane System," J. Chem. Eng. Data, 19, 334-339(1974) https://doi.org/10.1021/je60063a023
  12. Stryjek, R., Chappelear P. S. and Kobayashi, R., "Low-Temperature Vapor-Liquid Equilibria of Nitrogen-Ethane System," J. Chem. Eng. Data, 19, 340-343(1974) https://doi.org/10.1021/je60063a024
  13. Anthony, R. G. and McKetta, J. J., "Phase Equilibrium in the Ethylene-Ethane-Water System," J. Chem. Eng. Data, 12, 21-28(1967) https://doi.org/10.1021/je60032a007
  14. Helntzt, A. and Streett, W. B., "Phase Equilibria in the $H_2/C_2H_6$ System at Temperatures from 92.5 to 280.1 K and Pressures to 560 MPa," J. Chem. Eng. Data, 27, 465-469(1982) https://doi.org/10.1021/je00030a029
  15. Tsierkezos, N. G. and Molinou, I. E., "Thermodynamic Properties of Water + Ethylene Glycol at 283.15, 293.15, 303.15, and 313.15 K," J. Chem. Eng. Data, 43, 989-993(1998) https://doi.org/10.1021/je9800914
  16. Wei, M. S. W., Brown, T. S., Kidnay, A. J. and Sloan, E. D., "Vapor + Liquid Equilibria for the Ternary System Methane + Ethane + Carbon Dioxide at 230 K and Its Constituent Binaries at Temperatures from 207 to 270 K," J. Chem. Eng. Data, 40, 726-731(1995) https://doi.org/10.1021/je00020a002
  17. Fredenslund, A., Mollerup, J. and Hall, K. R., "Vapor-Liquid Equilibrium Data for the Systems $C_2H_4+C_2H_6\;and\;CO_2+C_2H_4+C_2H_6$," J. Chem. Eng. Data, 21, 301-304(1976) https://doi.org/10.1021/je60070a006
  18. Bezanehtak, K., Combes, G. B., Dehghani, F. and Foster, N. R., "Vapor-Liquid Equilibrium for Binary Systems of Carbon Dioxide + Methanol, Hydrogen + Methanol, and Hydrogen + Carbon Dioxide at High Pressures," J. Chem. Eng. Data, 47, 161-168(2002) https://doi.org/10.1021/je010122m
  19. Wichterle, I. and Kobayashi, R., "Vapor-Liquid Equilibrium of Methane-Ethane System at Low Temperatures and High Pressures," J. Chem. Eng. Data, 17, 9-12(1972) https://doi.org/10.1021/je60052a022
  20. Mraw, S. C., Hwang S. C. and Kobayashi, R., "Vapor-Liquid Equilibrium of the $CH_4-CO_2$ System at Low Temperatures," J. Chem. Eng. Data, 23, 135-139(1978) https://doi.org/10.1021/je60077a014
  21. Keshtkar, A., Jalali, F. and Moshfeghian, M., "Development and extension of PSRK/ UNIQUAC model to methane and nitrogen gases," Fluid Phase Equilibria, 145, 225-237(1998) https://doi.org/10.1016/S0378-3812(98)00184-8
  22. Twu, C. H., Tassone, V., Sim, W. D. and Watanasiri, S., "Advanced Equation of State Method for Modeling TEG-water for Glycol Gas Dehydration," Fluid Phase Equilibria, 228-229, 213-221(2005) https://doi.org/10.1016/j.fluid.2004.09.031
  23. Kang, S. P., Lee, H., Lee, C. S. and Sung, W. M., "Hydrate Phase Equilibria of the Guest Mixtures Containing $CO_2$, $N_2$ and Tetrahydrofuran," Fluid Phase Equilibria, 185, 101-109(2001) https://doi.org/10.1016/S0378-3812(01)00460-5
  24. Folas, G. K., Bergal, O. J., Solbraa, E., Fredheim, A. O., Kontogeorgis, G. M., Michelsen, M. L. and Stenby, E. H., "High-pressure Vapor-liquid Equilibria of Systems Containing Ethylene Glycol, Water and Methane Experimental Measurements and Modeling," Fluid Phase Equilibria, 251, 52-58(2007) https://doi.org/10.1016/j.fluid.2006.11.001
  25. Li, X. S. and Englezos, P., "Vapor-liquid Equilibrium of Systems Containing Alcohols, Water, Carbon Dioxide and Hydrocarbons Using SAFT," Fluid Phase Equilibria, 224, 111-118(2004) https://doi.org/10.1016/j.fluid.2004.06.052
  26. Scifinder Scholar data base
  27. http://www.cheric.org/research/kdb/hcvle/hcvle.php
  28. Beaton, C. F. and Hewitt, G. F., Physical Property Data for the Design Engineer, Hemisphere Pub. Corp., New York, 338-341(1989)
  29. Melles, S., Grievink, J. and Schrans, S. M., "Optimization of the Conceptual Design of Reactive Distillation Columns," Chemical Engineering Science, 55, 2089-2097(2000) https://doi.org/10.1016/S0009-2509(99)00497-2
  30. Bandyopadhyay, S., "Effect of Feed on Optimal Thermodynamic Performance of a Distillation Column," Chemical Engineering Journal, 88, 175-186(2002) https://doi.org/10.1016/S1385-8947(01)00303-5
  31. Monroy-Loperena, R., Perez-Cisneros, E. and Alvarez-Ramirez, J., "A Robust PI Control Configuration for a High-purity Ethylene Glycol Reactive Distillation Column," Chemical Engineering Science, 55, 4925-4937(2000) https://doi.org/10.1016/S0009-2509(00)00124-X
  32. Soave, G. and Feliu, J. A., "Saving Energy in Distillation Towers by Feed Splitting," Applied Thermal Engineering, 22, 889-896(2002) https://doi.org/10.1016/S1359-4311(02)00006-6
  33. Weifeng, H., Su, H., Hu, Y. and Chu, J., "Modeling, Simulation and Optimization of a Whole Industrial Catalytic Naphtha Reforming Process on Aspen Plus Platform," Chinese J. Chem. Eng., 14(5), 584-591(2006) https://doi.org/10.1016/S1004-9541(06)60119-5
  34. Langston, P., Hilal, N., Shingfield, S. and Webb, S., "Simulation and Optimization of Extractive Distillation with Water as Solvent," Chemical Engineering and Processing, 44, 345-351(2005) https://doi.org/10.1016/j.cep.2004.05.008
  35. Munoz, R., Monton, J. B., Burguet, M. C. and Torre, J., "Separation of Isobutyl Alcohol and Isobutyl Acetate by Extractive Distillation and Pressure-swing Distillation: Simulation and Optimization," Separation and Purification Technology, 50, 175-183(2006) https://doi.org/10.1016/j.seppur.2005.11.022
  36. Lee, J. C., Yeo, Y. K., Song, K. H. and Kim, I. W., "Operating Strategies and Optimum Feed Tray Locations of the Fractionation Unit of BTX Plants for Energy Conservation," Korean J. Chem. Eng., 18(4), 428-431(2001) https://doi.org/10.1007/BF02698286
  37. Neves, F. J. M., Silva, D. C. M. and Oliveira, N. M. C., "A Robust Strategy for Optimizing Complex Distillation Columns," Computers and Chemical Engineering, 29, 1457-1471(2005) https://doi.org/10.1016/j.compchemeng.2005.02.002
  38. Chang, H. and Li, J. W., "A New Exergy Method for Process Analysis and Optimization," Chemical Engineering Science, 60, 2771-2784(2005) https://doi.org/10.1016/j.ces.2004.12.029
  39. Barttfeld, M., Aguirreal, P. A. and Grossmann, I. E., "Alternative Representations and Formulations for the Economic Optimization of Multicomponent Distillation Columns," Computers and Chemical Engineering, 27, 363-383(2003) https://doi.org/10.1016/S0098-1354(02)00213-2