DOI QR코드

DOI QR Code

Molecular Cloning, Tissue Distribution and Segmental Ontogenetic Regulation of b0,+ Amino Acid Transporter in Lantang Pigs

  • Zhi, Ai-Min (College of Animal Science, South China Agricultural University) ;
  • Feng, Ding-Yuan (College of Animal Science, South China Agricultural University) ;
  • Zhou, Xiang-Yan (College of Animal Science, South China Agricultural University) ;
  • Zou, Shi-Geng (College of Animal Science, South China Agricultural University) ;
  • Huang, Zhi-Yi (College of Animal Science, South China Agricultural University) ;
  • Zuo, Jian-Jun (College of Animal Science, South China Agricultural University) ;
  • Ye, Hui (College of Animal Science, South China Agricultural University) ;
  • Zhang, Chang-Ming (College of Animal Science, South China Agricultural University) ;
  • Dong, Ze-Min (College of Animal Science, South China Agricultural University) ;
  • Liu, Zhun (College of Animal Science, South China Agricultural University)
  • 투고 : 2008.01.18
  • 심사 : 2008.03.07
  • 발행 : 2008.08.01

초록

Cationic amino acid transporter $b^{0,+}AT$ (HGMW-approved gene symbol SLC7A9, solute carrier family 7, member 9) plays a crucial role in amino acid nutrition. In the present study, we describe the cloning and sequencing of porcine $b^{0,+}AT$. Based on the sequence of porcine $b^{0,+}AT$ deposited in the NCBI (National Center for Biotechnological Information), we identified a putative porcine homologue. Using rapid amplification of cDNA ends (RACE), the full-length cDNA encoding porcine $b^{0,+}AT$ was isolated. The porcine $b^{0,+}AT$ cDNA was 1,680 bp long, encoding a 487 amino acid trans-membrane protein. The predicted amino acid sequence was found to have 88.9% and 87.1% identity with human and mouse $b^{0,+}AT$, respectively. Real-time RT-PCR indicated porcine $b^{0,+}AT$ transcripts expressed in heart, kidney, muscle and small intestine. The small intestine had the highest $b^{0,+}AT$ mRNA abundance while the muscle had the lowest (p<0.05). Along the longitudinal axis, the ileum had the highest $b^{0,+}AT$ mRNA abundance while the colon had the lowest (p<0.05). The $b^{0,+}AT$ mRNA level was highest on day 7 and 90 in the duodenum (p<0.05). It increased from day 1 to day 26 in the jejunum (p>0.05) and had the highest abundance on day 60 (p<0.05). There was, however, no difference between day 1, 7, 26, 30, 90 and 150 (p>0.05). The strongest $b^{0,+}AT$ expression appeared on day 7 in the ileum before weaning, and then decreased till day 30 but rose gradually again from day 60 to 150 (p<0.05).

키워드

참고문헌

  1. Arriza, J. L., M. P. Kavanaugh, W. A. Fairman, Y. N. Wu, G. H. Murdoch, R. A. North and S. G. Amara. 1993. Cloning and expression of a human neutral amino acid transporter with structural similarity to the glutamate transporter gene family. J. Biol. Chem. 268:15329-15332.
  2. Buddington, R. K., J. Elnif, A. A. Puchal-Gardiner and P. T. Sangild. 2001. Intestinal apical amino acid absorption during development of the pig. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280:241-247. https://doi.org/10.1152/ajpregu.2001.280.1.R241
  3. Chairoungdua, A., H. Segawa, J. Y. Kim, K.-I. Miyamoto, H. Haga, Y. Fukui, K. I. Mizoguchi, H. Ito, E. Takeda, H. Endou, Y. Kanai. 1999. Identification of an amino acid transporter associated with the cystinuria-related type II membrane glycoprotein. J. Biol. Chem. 274:28845-28848. https://doi.org/10.1074/jbc.274.41.28845
  4. Chaudhry, F. A., R. J. Reimer, D. Krizaj, D. Barber, J. Storm-Mathisen, D. R. Copenhagen and A. R. H. Edwards. 1999. Molecular analysis of system N suggests novel physiological roles in nitrogen metabolism and synaptic transmission farrukh a chaudhry. Cell. 99:769-780. https://doi.org/10.1016/S0092-8674(00)81674-8
  5. Chillaron, J., R. Estevez, C. Mora, C. A. Wagner, H. Suessbrich, F. Lang, J. L. Gelpi, X. Testar, A. E. Busch, A. Zorzano and M. Palacin. 1996. Obligatory amino acid exchange via systems b$^{0,+}$-like and y$^+$L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J. Biol. Chem. 271:17761-17770. https://doi.org/10.1074/jbc.271.30.17761
  6. Chillaron, J., R. Roca, A. Valencia, A. Zorzano and M. Palacin. 2001. Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am. J. Physiol. Renal. Physiol. 281:995-1018.
  7. de Castro, E., C. J. A. Sigrist, A. Gattiker, V. Bulliard, P. S. Langendijk-Genevaux, E. Gasteiger, A. Bairoch, N. Hulo. 2006. ScanProsite: detection of PROSITE signature matches and pro rule-associated functional and structural residues in proteins. Nucl. Acids Res. 34:362-365.
  8. Feliubadalo, L., M. Font, J. Purroy, F. Rousaud, X. Estivill, V. Nunes, E. Golomb, M. Centola, I. Aksentijevich, Y. Kreiss, B. Goldman, M. Pras, D. L. Kastner, E. Pras, P. Gasparini, L. Bisceglia, E. Beccia1, M. Gallucci, L. D. Sanctis, A. Ponzone, G. F. Rizzoni, L. Zelante, M. T. Bassi, Jr, A. L. G. Manzoni, A. D. Grandi, M. Riboni, J. K. Endsley, A. Ballabio, G. Borsani, N. Reig, E. Fernández, R. Estevez, M. Pineda, D. Torrents, M. Camps, J. Lloberas1, A. Zorzano and M. Palacin. 1999. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (b$^{0,+}$AT) of rBAT. Nat.Genet. 23:52-57.
  9. Font-Llitjos, M., L. Feliubadalo, M. Espino, R. Cleries, S. Manas, I. M. Frey, S. Puertas, G. Colell, S. Palomo, J. Aranda, J. Visa, M. Palacin and V. Nunes. 2007. Slc7a9 knockout mouse is a good cystinuria model for antilithiasic pharmacological studies. Am. J. Physiol. Renal. Physio. 293:732-740. https://doi.org/10.1152/ajprenal.00121.2007
  10. Font, M., L. Feliubadalo, X. Estivill, V. Nunes, E. Golomb, Y. Kreiss, E. Pras, L. Bisceglia, A. P. d'Adamo, L. Zelante, P. Gasparini, M. T. Bassi, A. L. George, Jr., M. Manzoni, M. Riboni, A. Ballabio, G. Borsani, N. Reig, E. Fernandez, A. Zorzano, J. Bertran and M. Palacin. 2001. Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-type I cystinuria. Hum. Mol. Genet. 10:305-316. https://doi.org/10.1093/hmg/10.4.305
  11. Johnson, L. R. 1997. Page 130 in Gastrointestinal Physiology, 6th ed. Mosby Inc. St. Louis, MI.
  12. Kanai1, Y. and H. Endou1. 2001. Heterodimeric amino acid transporters: molecular biology and pathological and pharmacological relevance. Curr. Drug. Metab. 2:339-354. https://doi.org/10.2174/1389200013338324
  13. Kekuda, R., P. D. Prasad, Y.-J. Fei, V. Torres-Zamorano, S. Sinha, T. L. Yang-Feng, F. H. Leibach and V. Ganapathy. 1996. Cloning of the sodium-dependent, broad-scope, neutral amino acid transporter b$^{0}$ from a human placental choriocarcinoma cell line. J. Biol. Chem. 271:18657-18661. https://doi.org/10.1074/jbc.271.31.18657
  14. Kekuda, R., V. Torres-Zamorano, Y. J. Fei, P. D. Prasad, H. W. Li, L. D. Mader, F. H. Leibach and V. Ganapathy. 1997. Molecular and functional characterization of intestinal Na$^{(+)}$-dependent neutral amino acid transporter b$^{0}$. Am. J. Physiol. Gastrointest Liver Physiol. 272:1463-1472. https://doi.org/10.1152/ajpgi.1997.272.6.G1463
  15. Krogh, A., B. Larsson, G. V. Heijne and E. L. L. Sonnhammer. 2001. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Molec. Biol. 305:567-580. https://doi.org/10.1006/jmbi.2000.4315
  16. Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-$\Delta$CT method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262
  17. Mastroberardino, L., B. Spindler, R. Pfeiffer, P. J. Skelly, J. Loffing, C. B. Shoemaker and F. Verrey. 1998. Amino-acid transport by heterodimers of 4F2hc/CD98 and members of a permease family. Nature 395(6699):288-291. https://doi.org/10.1038/26246
  18. Munck, L. K., M. L. Grondahl, J. E. Thorboll, E. Skadhauge and B. G. Munck. 2000. Transport of neutral, cationic and anionic amino acids by systems B, b$^{0,+}$, XAG, and ASC in swine small intestine. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 126:527-537. https://doi.org/10.1016/S1095-6433(00)00227-0
  19. Palacin, M., R. Estevez, J. Bertran and A. Zorzano. 1998. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol. Rev. 78:969-1054. https://doi.org/10.1152/physrev.1998.78.4.969
  20. Pfeiffer, R., B. Spindler, J. Loffing, P. J. Skelly, C. B. Shoemaker and F. Verrey. 1998. Functional heterodimeric amino acid transporters lacking cysteine residues involved in disulfide bond. FEBS. 439:157-162. https://doi.org/10.1016/S0014-5793(98)01359-3
  21. Pfeiffer, R., J. Loffing, G. Rossier, C. Bauch, C. Meier, T. Eggermann, D. Loffing-Cueni, L. C. Kuhn and F. Verrey. 1999. Luminal heterodimeric amino acid transporter defective in cystinuria. Mol. Biol. Cell 10:4135-4147. https://doi.org/10.1091/mbc.10.12.4135
  22. Rajan, D. P., R. Kekuda, W. Huang, H. Wang, L. D. Devoe, F. H. Leibach, P. D. Prasad and V. Ganapathy. 1999. Cloning and Expression of a b$^{0,+}$-like amino acid transporter functioning as a heterodimer with 4F2hc instead of rBAT. A new candidate gene for cystinuria. J. Biol. Chem. 274:29005-29010. https://doi.org/10.1074/jbc.274.41.29005
  23. Reig, N., J. Chillaron, P. Bartoccioni, E. Fernandez, A. Bendahan, A. Zorzano, B. Kanner, M. Palacin and J. Bertran. 2002. The light subunit of system b$^{0,+}$ is fully functional in the absence of the heavy subunit. The EMBO J. 21:4906-4914. https://doi.org/10.1093/emboj/cdf500
  24. Shi-bin Yuan, Dai-wen Chen, K.-Y. Zhang and B. Yu. 2007, Effects of oxidative stress on growth performance, nutrient digestibilities and activities of antioxidative enzymes of weanling pigs. Asian-Aust. J. Anim. Sci. 20:1600-1605. https://doi.org/10.5713/ajas.2007.1600
  25. Van Winkle, L. J., A. L. Campione and J. M. Gorman. 1988. Na$^+$- independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. J. Biol. Chem. 263:3150-3163.
  26. Varoqui, H., H. Zhu, D. Yao, H. Ming and J. D. Erickson. 2000. Cloning and functional identification of a neuronal glutamine transporter. J. Biol. Chem. 275:4049-4054. https://doi.org/10.1074/jbc.275.6.4049
  27. Wagner, C. A., F. Lang and S. Broer. 2001. Function and structure of heterodimeric amino acid transporters. Am. J. Physiol. Cell Physiol. 281:1077-1093. https://doi.org/10.1152/ajpcell.2001.281.4.C1077
  28. Wang, J. F., T. Lundh, B. Westrm and J. E. Lindberg. 2005. The Effect of complementary access to milk replacer to piglets on the activity of brush border enzymes in the piglet small intestine. Asian-Aust. J. Anim. Sci. 18:1617-1622. https://doi.org/10.5713/ajas.2005.1617

피인용 문헌

  1. Molecular Cloning, Tissue Distribution and Expression of Porcine y+L Amino Acid Transporter-1 vol.23, pp.2, 2008, https://doi.org/10.5713/ajas.2010.90275
  2. Molecular cloning of the amino acid transporter b0,+AT cDNA from the orange‐spotted grouper (Epinephelus coioides) and the effect of arginine on its expression vol.26, pp.3, 2008, https://doi.org/10.1111/anu.13046