Characteristics of Quantiy and Quality for Bulk Precipitation and Stemflow of 5 Tree Species in Mt. Joongwang, Gangwon-do - A Centering Around the pH Value -

강원도 중왕산 지역에서 5개 수종의 임외강우와 수간류의 수량 및 수질특성(I) - pH값을 중심으로 -

  • Jung, Mun Ho (Technology Research Center, Mine Reclamation Corporation Coal Center) ;
  • Lee, Kwang Su (Forest Practice Research Center, Korea Forest Research Institute)
  • 정문호 (광해방지사업단 기술연구센터) ;
  • 이광수 (국립산림과학원 산림생산기술연구소)
  • Received : 2008.02.21
  • Accepted : 2008.04.22
  • Published : 2008.06.29

Abstract

The objectives of this study were to investigate inputs and pH values of stemflow of bulk precipitation and 5 tree species (Deciduous species : Quercus mongolica, Betula costata, Kalopanax septemlobus, Fraxinus rhynchophylla, Plantation species : Larix kaempferi), in Mt. Joongwang, Pyongchang-gun, Gangwondo, from June to October in 2004 and 2005. The amount of stemflow during study period was the greatest in Q. mongolica (9.9 mm), and B. costata (7.5 mm), K. setemlobus (5.9 mm), L. kaempferi (3.8 mm), F. rhynchophylla (3.2 mm), respectively. Stemflow of each species increased with bulk precipitation. Increment with bulk precipitation was smaller in 2004 when the intense bulk precipitation occurred more. pH values of stemflow was the highest in F. rhynchophylla (5.91), and K. setemlobus (5.64), B. costata (5.80), Q. mongolica (5.56), L. kaempferi (5.25), respectively. Generally, pH values of stemflow of all species increased with bulk precipitation pH value, and lower than that (6.39).

본 연구는 산림생태계내 물질순환의 한 경로인 수간류를 대상으로 수종에 따른 수간류량과 pH값의 특성을 살펴보기 위해 강원도 평창군에 위치한 중왕산 지역에서 2004년과 2005년에 매년 6월부터 10월까지 임외강우와 활엽수종인 신갈나무, 거제수나무, 음나무, 물푸레나무와 대표적 조림수종인 낙엽송 등 5개 수종의 수간류의 유입량과 pH값을 분석하였다. 수종별 수간류량은 신갈나무에서 조사기간 동안 9.9 mm가장 많았고, 거제수나무, 음나무, 낙엽송, 물푸레나무가 각각 7.5 mm, 5.9 mm, 3.8 mm, 3.2 mm였다. 임외강우량이 증가할수록 수간류량도 증가하였으며, 단기간 집중호우가 많이 발생한 2004년에 임외강우의 증가에 따른 수간류의 증가량이 적게 나타났다. 각 수종별 수간류의 pH값은 물푸레나무에서 평균 5.56으로 가장 높았으며, 음나무 5.64, 거제수나무 5.80, 신갈나무 5.91, 낙엽송 5.25 순이었다. 대체로 임외강우의 pH값이 증가함에 따라 수간류의 pH값도 증가하였으며, 임외강우의 평균 pH값은 6.39로 모든 수종의 pH값이 임외강우의 pH값보다 낮았다.

Keywords

References

  1. 기상청. 2004. http://www.kma.go.kr/. 기상월보
  2. 기상청. 2005. http://www.kma.go.kr/. 기상월보
  3. 김경하. 1993. 산림의 강우차단 손실량 추정 전산모형개발에 관한 연구. 서울대학교 박사학위논문. 117pp
  4. 김민식, 원서문, 전근우. 2001. 강원도 춘천시 지역에 있어서 5 개 수종 수간류의 pH 및 전기전도도 변화. 한국임학회지 90(4): 413-419
  5. 김영채, 정동준, 김홍률. 2002. 고속도로변 산림지역(신갈, 서천) 강우의 화학적 조성. 한국농림기상학회지 4(4): 237-247
  6. 박재현, 우보명. 1997. 산림유역내 강수로부터 계류수질에 미치는 영향인자 분석. 한국임학회지 86(4): 789-501
  7. 이돈구, 김갑태, 주광영, 김영수. 1997. 경기도 광주 지방 잣나무림, 납엽송림 및 참나무림에서 수관통과우, 수간류 및 차단손실. 한국임학회지 86(2): 200-207
  8. 주광영. 1999. 경기도 광주지방의 잣나무림, 낙엽송림 및 참나무천연림에서 강우와 낙엽에 의해 토양으로 유입되는 양료와 이동 경로. 서울대학교 박사학위논문
  9. 주영특, 진현오, 손요환, 오종민, 정덕영. 1999. 강우와 식생의 상호작용이 수관통과우 및 수간류의 화학적 성질변화에 미치는 영향. 한국임학회지 88(2): 149-156
  10. 高橋忠辛. 1996. 主な落葉廣葉樹樹幹流の酸性度とヤマナラシ樹幹流による土酸性化抑制機能.岩手技術セ究 6: 17-27
  11. 岩井宏壽. 1993. 千葉懸のスギ衰退地と非衰退地における 林外雨, 林雨, 樹幹流の成分比較.第104回日本林學會大會學術講演集. pp. 377-380
  12. 佐朋幸, 後藤和秋, 長谷川浩一, 池田重人. 1991. 盛岡市周の代表的森林における林外雨, 林雨, 樹幹流の酸性度ならびにその溶存成分-樹種による樹幹流の p H固有値-.森林立地 32(2): 43-58
  13. Capellato, R., N.E. Peters, and H.L. Ragsdale. 1993. Acidic atmospheric deposition and canopy interaction of adfacent decideous and coniferous forests in the Georgia Piemont. Canadian Journal of Forest Research 23: 1114-1124 https://doi.org/10.1139/x93-142
  14. Chang, S.C., and E. Matzner. 2000. The effect of beech stemflow on spatial patterners of soil solution chemistry and seepage fluxes in a mixed beech/oak stand. Hydrological Processes 14: 135-144 https://doi.org/10.1002/(SICI)1099-1085(200001)14:1<135::AID-HYP915>3.0.CO;2-R
  15. Crockford, R.H., and D.P. Richardson. 2000. Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate. Hydrological Process 14: 2903-2920 https://doi.org/10.1002/1099-1085(200011/12)14:16/17<2903::AID-HYP126>3.0.CO;2-6
  16. DVWK (Deutscher Verband fur Wasserwirtschaft und Kulturbau). 1992. Determination of interception loss in forests stands during rain. Guidelines for water management No. 304
  17. Herwitz, S.R. 1985. Interception storage capacities of tropical rainforest canopy trees. Journal of Hydrology 77: 237-252 https://doi.org/10.1016/0022-1694(85)90209-4
  18. Kuraji, K.,T. Yuri, T. Nobuaki, and K. Isamu. 2001. Generation of stemflow molume and chemistry in a mature Japanese cypress forest. Hydrological Processes 15: 1967-1978 https://doi.org/10.1002/hyp.250
  19. Levia Jr., D.F. 2000. Winter stemflow leaching from deciduous canopy trees in relation to meteorologial condition and canopy structure. Ph.D thesis, Clark University, Worcester, Massachusetts
  20. Levia Jr, D.F., and E.F. Ethan. 2003. A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricutural ecosystems. Journal of Hydrology 274: 1-29 https://doi.org/10.1016/S0022-1694(02)00399-2
  21. Levia Jr., D.F., and, S.R. Herwitz. 2000. Physical properties of water in relation to stemflow leachate dynamics: implications for nutrient cycling. Canadian Journal of Forest Research 30: 662-666 https://doi.org/10.1139/cjfr-30-4-662
  22. Liu, S. 1988. Estimation of rainfall storage capacity in the canopies of cypress wetlands and slash pine uplands in north-central Florida. Journal of Hydrology 207: 32-41 https://doi.org/10.1016/S0022-1694(98)00115-2
  23. Lovett, G.M., and S.E. Lindberg. 1984. Dry deposition and canopy exchange in a mixed oak forest as determined by analisys of throughfall. Journal of Applied Ecology 21: 1013-1027 https://doi.org/10.2307/2405064
  24. Macdonald, N.W., A.J. Burton., H.O. Lichty., J.A. Witter., K.S. Pregitzer., G.D. Mrotz, and D.D. Richter. 1992. Ion leaching in forest ecosystem along Great Lakes air pullution gradient. Journal of Environmental Quality 21: 614-623 https://doi.org/10.2134/jeq1992.00472425002100040015x
  25. Mahendrappa, M.K. 1990. Partitioning of rainwater and chemicals into throughfall and stemflow in different forest stands. Forest Ecology and Management 30: 65-75 https://doi.org/10.1016/0378-1127(90)90127-W
  26. Matzner, E., and K.J. Meiwes. 1994. Long-term development of element fluxes bulk precipitation and througfhall in two German forest. Journal of Environmental Quality 26: 162-166
  27. Mauchamp, A., and J.L. Janeau. 1993. Water funnelling by the crown of Flourensia cerrua, A Chihuahuan Desert shrub. Journal of Arid Environment 25: 299-306 https://doi.org/10.1006/jare.1993.1062
  28. Otto, H.J. 1992. Waldkologie. Ulmer, Stuttgart 391pp
  29. Parker, G.G. 1990. Evaluation of dry deposition pollutant damage, and forest health with throughfall studies. Springer- Verlag. New York. pp. 16-61
  30. Robertson, S.M.C., M. Hornung, and V.H. Kennedy. 2000. Water chemical of throughfall and soil water under four tree species at Gisburn, Northwest England, before and after felling. Forest Ecology and Management 129: 102-117
  31. SAS Institute. 1999. SAS/STAT User's Guide. Version 8. Cary, NC. SAS Institute Inc
  32. Shibata, H, and H. Sakuma. 1996. Canopy modification of precipitation chemistry in deciduous and coniferous forest affected by acidic deposition. Soil Science and Plant Nutrition 42: 1-10 https://doi.org/10.1080/00380768.1996.10414683
  33. Silva, I.C., and H.G. Rodreiguez. 2001. Interception loss, throughfall and stemflow chemistry in pine and oak forests in northeastern Mexico. Tree Physiology 21: 1009-1013 https://doi.org/10.1093/treephys/21.12-13.1009
  34. Strigel, G., D. Ruhiyat, D. Prayitno, and S. Sarmina. 1994. Nutrient input by rainfall into secondary forests in east Kalimantan, Indonesia. Journal of Tropical Ecology 10: 285-288 https://doi.org/10.1017/S0266467400007951
  35. Xiao, Q., E.H. McPherson, M.E. Grismer, and J.R. Simpson. 2000. Winter rainfall interception by two mature open grown trees in Davis, California. Hydrological Processes 14: 763-784 https://doi.org/10.1002/(SICI)1099-1085(200003)14:4<763::AID-HYP971>3.0.CO;2-7