Development of a System for Measuring the Velocity of a Waste-gas Produced from a Melting Process

용해공정에서 배출되는 폐가스 유속 측정 시스템 개발

  • Park, Jin Soo (School of Chemical Engineering and Technology, Yeungnam University) ;
  • Jung, Jae Hak (School of Chemical Engineering and Technology, Yeungnam University) ;
  • Sung, Su Whan (Department of Chemical Engineering, Kyungpook National University)
  • 박진수 (영남대학교 디스플레이화학공학부) ;
  • 정재학 (영남대학교 디스플레이화학공학부) ;
  • 성수환 (경북대학교 화학공학과)
  • Received : 2007.10.05
  • Accepted : 2007.11.03
  • Published : 2008.04.30

Abstract

In the case of a melting process, the velocity of waste-gas has been measured to produce the melt of an equal condition and to analyze the combustion situation of the fuel which was inputted in a furnace. Recently, there are many kinds of measuring equipments of gas-velocity on the market. But, the waste-gas produced from a melting process is high temperature, the slow speed and includes much dust. Existent measuring equipments are not suited to these conditions. Therefore, we made the measuring equipment of new method which is enough detailed to react on the slow speed and sustains in high temperature. As shown in the result of field test, the manufactured measuring equipment is so sensitive as to react on a small change of velocity and senses temperature change rapidly, we expect that this equipment helps in temperature control of a melting furnace.

용해공정의 경우, 용해물을 균일한 상태로 유지하고 용해로에 투입되는 연료의 연소상황을 분석하기 위해 폐가스 유속을 측정한다. 현재 시중에 많은 종류의 기체유속 측정장치들이 있지만, 용해공정에서 발생하는 폐가스는 고온이고, 저속이며, dust를 많이 갖고 있어 기존의 측정장치들은 이런 조건에 적합하지 않다. 따라서 저속에 반응할 만큼 충분히 정밀하고 고온에 견딜 수 있는 새로운 방식의 측정장치를 제작하였다. 현장테스트 결과, 제작된 측정 장치는 유속의 작은 변화에도 반응할 정도로 충분히 민감하고 온도변화를 빠르게 감지하기 때문에 용해로의 온도제어에 도움을 줄 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 영남대학교

References

  1. Park, S. J., Lee, D. G. and Lee, S. H., "Computational Analysis of flow Velocity and Particle Trajectory on the Surface of Bag-Shaped Filter with a Different Permeability," Korean J. Chemi-Cal Eng. 44(3), 294-299(2006)
  2. Min, G., and Rowe, D. M., "Cooling Performance of Integrated Thermoelectric Microcooler," Solid-State Electronics, 43(5), 923-929(1999) https://doi.org/10.1016/S0038-1101(99)00045-3
  3. Gordon, J. M., Ng, K. C., Chua, H. T. and Chakraborty, A., "The Electro-Adsorption Chiller: a Miniaturized Cooling Cycle with Applications to Micro Electronics," International J. Refrigeration 25(8), 1025-1033(2002) https://doi.org/10.1016/S0140-7007(02)00026-9
  4. www.cas.co.kr/bemarket/shop/
  5. Park, H. Y. and Kim, Y. J., "Combustion Characteristics of Vacuum Residue in a Test Furnace and Its Utilization for Utility Boiler," Korean J. Chemical Eng. 24(1), 83-92, (2007) https://doi.org/10.1007/s11814-007-5014-3
  6. Kim, H. K. and Song, T. H., "Determination of the Gas Temperature Profile in a Large-scale Furnace Using Fast/Efficient Inversion Scheme for the SRS Technique," J. Quantitative spectroscopy and Radiative transfer, 93(1), 369-381(2005) https://doi.org/10.1016/j.jqsrt.2004.08.030