Supercapacitive Properties of Carbon-Nano Fiber/MnO2 Composite Electrode

나노탄소섬유/MnO2 복합전극의 초고용량 캐폐시터 특성

  • Lee, Byung Jun (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Yoon, Yu Il (Division of Applied Chemistry and Biotechnology, Hanbat National University) ;
  • Ko, Jang Myoun (Division of Applied Chemistry and Biotechnology, Hanbat National University)
  • 이병준 (한밭대학교 응용화학생명공학부) ;
  • 윤여일 (한밭대학교 응용화학생명공학부) ;
  • 고장면 (한밭대학교 응용화학생명공학부)
  • Received : 2007.10.19
  • Accepted : 2007.10.20
  • Published : 2008.02.28

Abstract

In order to improve the specific capacitance of amorphous hydrous manganese oxide ($MnO_2$) for supercapacitors, it is made into composites with vapour-grown carbon nanofibers (VGCF) having the VGCF ratio as 40 wt% in the composites. The electrochemical properties of these composites are investigated in 1.0 M $Na_2SO_4$ by cyclic voltammetry (CV), impedance measurements and chronopotentiometric charger/discharger. The composite with 40 wt% VGCF shows the superior electrochemical performance, whose specific capacitance (based on the mass of $MnO_2$, $0.8mg/cm^2$) is 380 F/g at 20 mV/s and 230 F/g at 500 mV/s. Also, the cycle-life testing of this electrode carried out for 3,000 charge/discharge cycles at $2.0mA/cm^2$ shows 97% capacitance retention.

비정형 $MnO_2$의 초고용량 캐폐시턴스 특성을 향상시키기 위하여 망간산화물을 높은 전기전도를 갖는 나노탄소섬유(vapour-grown carbon nanofibers, VGCF)와 복합화하여 나노탄소섬유/망간 산화물(VGCF(40 wt%)/$MnO_2$) 복합 전극을 제조하여 cyclic voltammetry(CV), impedance spectroscopy 및 chronopotentiometric charge/discharge 기법을 사용하여 1.0M $Na_2SO_4$ 전해질에서 초고용량 캐폐시터 특성을 조사하였다. 40 wt% VGCF를 포함한 복합전극에서 $0.8mg/cm^2$ 망간산화물을 로딩한 $VGCF/MnO_2$ 복합전극은 주사속도 20 mV/s에서는 380 F/g, 500 mV/s에서는 230 F/g의 비용량 값을 나타냈다. 또한, $2.0mA/cm^2$의 일정전류로 충방전 실험을 수행한 결과 3,000회에서 97%의 초기용량을 유지하였다.

Keywords

References

  1. Kim, K. M., Ryu, K. S., Kang, S.-G., Chang, S. H. and Chung, I. J., "The Effect of Silica Addition on the Properties of Poly ((vinylidene fluoride)-co-hexafluoropropylene)-Based Polymer Electrolytes", Macromol. Chem. Phys., 202, 866-872(2001). https://doi.org/10.1002/1521-3935(20010301)202:6<866::AID-MACP866>3.0.CO;2-C
  2. Lee, H. Y., Maivannan, V. and Goodenough, J. B., "Electrochemical Capacitors with KCl Electrolyte," Comptes Rendus Chimie 2(11-13), 565-577(1999).
  3. Dai, Y., Wang, K., Zhao, J. and Xie, J., "Manganese Oxide Film Electrodes Prepared by Electrostatic Spray Deposition for Electrochemical Capacitors from the $KMnO_4$ solution," J. Power Sources, 161(1), 737-742(2006). https://doi.org/10.1016/j.jpowsour.2006.04.098
  4. Reddy, R. N. and Reddy, R. G., "Sol-gel MnO2 as an Electrode Material for Electrochemical Capacitors," J. Power Sources, 124(1), 330-337(2003). https://doi.org/10.1016/S0378-7753(03)00600-1
  5. Wan, C., Azumi, K. and Konno, H., "Hydrated Mn(IV) Oxideexfoliated Graphite Composites for Electrochemical Capacitor," Electrochim. Acta, 52(9), 3061-3066(2007). https://doi.org/10.1016/j.electacta.2006.09.039
  6. Li, J., Wang, X., Huang, Q., Gamboa, S. and Sebastian, P. J., "A New Type of MnO2xH2O/CRF Composite Electrode for Supercapacitors," J. Power Sources, 160(2), 1501-1505(2006). https://doi.org/10.1016/j.jpowsour.2006.02.045
  7. Gemeay, A. H., Mansour, I. A., E-Sharkawy, R. G. and Zaki, A. B., "Preparation and Characterization of Polyaniline/manganese Dioxide Composites Via Oxidative Polymerization: Effect of Acids," Eur. Polym. J., 41(11), 2575-2583(2005). https://doi.org/10.1016/j.eurpolymj.2005.05.030
  8. R, E. C., Rosario, A. V., Mello, R. M. Q. and Micaroni, L., "Poly (3-methylthiophene)/$MnO_2$ Composite Electrode as Electrochemical Capacitors," J. Power Sources, 163(2), 1137-1142(2007). https://doi.org/10.1016/j.jpowsour.2006.09.056
  9. Subramanian, V., Zhu, H. and Wei, B., "Nanostructured MnO2: Hydrothermal Synthesis and Electrochemical Properties as a Supercapacitor Electrode Material," J. Power Sources, 159(1), 361-364(2006). https://doi.org/10.1016/j.jpowsour.2006.04.012
  10. Zolfaghari, A., Ataherian, F., Ghaemi, M. and Gholami, A., "Capacitive Behavior of Nanostructured MnO2 Prepared by Sonochemistry Method," Electrochim. Acta, 52(8), 2806-2814(2007). https://doi.org/10.1016/j.electacta.2006.10.035
  11. Shinomiya, T., Gupta, V. and Miura, N., "Effects of Electrchemical- deposition Method and Microstructure on the Capacitive Characteristics of Nano-sized Manganese Oxide," Electrochim. Acta, 51(21), 4412-4419(2006). https://doi.org/10.1016/j.electacta.2005.12.025
  12. Machefaux, E., Brousse, T., Belanger, D. and Guyomard, D., "Supercapacitor Behavior of New Substituted Manganese Dioxides," J. Power sources, 165(2), 651-655(2007). https://doi.org/10.1016/j.jpowsour.2006.10.060
  13. Broughton, J. N. and Brett, M. J., "Investigation of Thin Films for Electrochemical Capacitors," Electrochim. Acta, 49(25), 4439- 4446 (2004). https://doi.org/10.1016/j.electacta.2004.04.035
  14. Sivakkumar, S. R., Ko, J. M., Kim, D. Y., Kim, B. C. and Wallace, G. G., "Performance Evaluation of CNT/Polypyrrole/$MnO_2$ Composite Electrodes for Electrochemical Capacitors," Electrochim. Acta, 52(25), 7377-7385(2007). https://doi.org/10.1016/j.electacta.2007.06.023
  15. Lee, B. J., Sivakkumar, S. R., Ko, J. M., Kim, J. H., Jo, S. M. and Kim, D. Y., "Carbon Nanofibre/Hydrous RuO2 Nanocomposite Electrodes for Supercapacitors," J. Power sources, 168(2), 546-552(2007). https://doi.org/10.1016/j.jpowsour.2007.02.076