The Role of GADD45 ${\beta}$ in Acute Myocardial Injury

급성 심근 손상에서 GADD45 ${\beta}$의 역할

  • Cho, Suk-Ki (Department of Thoracic and Cardiovascular Surgery, Kyungpook National University Hospital, College of Medicine, Kyungpook National University) ;
  • Hong, Jong-Myeon (Department of Thoracic and Cardiovascular Surgery, Chungbuk National University Hospital, College of Medicine, Chungbuk National University) ;
  • Lee, Hak-Mo (Xenotransplantation Research Center, Clinical Research Institute, Seoul National University Hospital, Department of Cardiothoracic Surgery, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University) ;
  • Oh, Byong-Chul (Xenotransplantation Research Center, Clinical Research Institute, Seoul National University Hospital, Department of Cardiothoracic Surgery, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University) ;
  • Lee, Jae-Woong (Xenotransplantation Research Center, Clinical Research Institute, Seoul National University Hospital, Department of Cardiothoracic Surgery, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University) ;
  • Lee, Jeong-Ryul (Department of Thoracic and Cardiovascular Surgery, Seoul National University Children's Hospital, Seoul National University College of Medicine)
  • 조석기 (경북대학교 의과대학 경북대학교병원 흉부외과학교실) ;
  • 홍종면 (충북대학교 의과대학 충북대학교병원 흉부외과학교실) ;
  • 이학보 (서울대학교병원 임상의학연구소 이종장기 연구개발센터, 한림대학교 의과대학 한림대학교성심병원 흉부외과학교실) ;
  • 오병철 (서울대학교병원 임상의학연구소 이종장기 연구개발센터, 한림대학교 의과대학 한림대학교성심병원 흉부외과학교실) ;
  • 이재웅 (서울대학교병원 임상의학연구소 이종장기 연구개발센터, 한림대학교 의과대학 한림대학교성심병원 흉부외과학교실) ;
  • 이정렬 (서울대학교 의과대학 서울대학교어린이병원 흉부외과학교실)
  • Published : 2008.02.05

Abstract

Background: A critical shortage of donor organs has necessitated an investigation of new strategies to increase the availability of additional organs available for human transplantation. We investigated the amount of apoptosis and expression of GADD45 ${\beta}$ in two groups, a GADD45 ${\beta}$-transfected group and untransfected group. Material and Method: The experimental groups consist of a control group (normal H9C2 cell line) and GADD45 ${\beta}$-transfected group. After injury of the each group, we evaluated the expression of GADD45 ${\beta}$ and the level of apoptosis in each group. Result: There was a significant increase in the expression of GADD45 ${\beta}$ in the GADD45 ${\beta}$-transfected group at 1 hour, 2 hours, and 3 hours after stimuli as compared with the control group. The amount of cardiac myoblast cell line apoptosis was significantly lower in the GADD45 ${\beta}$-transfected group as compared with the control group. The concentration of annex in in the GADD45 ${\beta}$-transfected group was significantly lower than that of the control. group after cell. injury. Conclusion: Transfection of a rat myoblast cell line with the GADD45 ${\beta}$ gene results in. decreased susceptibility to cell injury of human serum.

배경: 말기 장기부전 환자가 증가하고 있지만 장기 공여자의 수는 부족하여 이종장기 이식의 필요성이 대두되고 있다. 하지만 아직까지 이종장기 이식 시 발생하는 면역학적 거부 반응은 해결되지 못하고 있다. 이에 본 연구에서는 이종장기 이식에서의 거부반응 극복을 위한 노력의 일환으로 돼지 심장의 생체 외 인간 혈액 관류 모델을 만들어 장기에 대한 인간 혈액의 거부반응과 관련되어 발현되는 유전자에 대한 기능을 규명하고 거부반응 극복을 위한 활용방안을 연구하고자 하였다. 대상 및 방법: 돼지의 심장을 이용한 생체 외 인간혈액 관류 모델을 구축하여 인간 혈액을 관류시킨 뒤 시간의 경과에 따른 유전자 발현양상의 변화를 관찰하여 시간 변화에 다르게 발현되는 30여 개의 유전자 중하나인 GADD45 ${\beta}$를 찾았다. GADD45 ${\beta}$의 역할을 규명하고자 쥐의 심근 세포주 H9C2에 GADD45 ${\beta}$를 삽입시켜 과발현 시켰고 다양한 염증 및 거부반응 환경에서 이 유전자의 발현양상과 기능을 알아보고자 역전사 중합 효소 연쇄반응(RT-PCR)을 통해 GADD45 ${\beta}$의 발현 정도와 심근 세포주의 자멸사 정도를 평가하였다. 결과: 세포 손상을 주지 않은 상태에서는 GADD45 ${\beta}$를 삽입한 군에서 GADD45 ${\beta}$를 삽입하지 않은 군보다 GADD45 ${\beta}$의 발현이 증가하였으며 GADD45 ${\beta}$를 삽입하지 않은 군에서 세포 손상을 준 후 측정한 GADD45 ${\beta}$발현은 시간에 따라서 변화하는 양상을 보여 1시간까지는 증가하다가 그 이후에는 감소하였다. 세포에 인간 혈청으로 세포 손상을 주고 세포의 자멸사를 평가한 결과 GADD45 ${\beta}$를 삽입한 군에서 GADD45 ${\beta}$를 삽입하지 않은 군에 비해서 자멸사 정도가 적었다. 결론: GADD45 ${\beta}$를 삽입시킨 세포주는 인간의 혈청에 의한 세포 손상이 GADD45 ${\beta}$를 삽입시키지 않은 세포주 보다 자멸사의 정도가 적어 GADD45 ${\beta}$는 세포 손상에 의한 세포의 자멸사를 줄여 세포를 보호하는 역할을 하였다.

Keywords

References

  1. Kobayashi T, Yokoyama I, Morozumi K, et al. Comparative study of the efficacy of removal of anti-ABO and anti-gal antibodies by double filtration plasmapheresis. Xenotransplantation 2000;7:101-8 https://doi.org/10.1034/j.1399-3089.2000.00063.x
  2. Sato Y, Kimikawa M, Suga H, et al. Prolongation of cardiac xenograft survival by double filtration plasmapheresis and ex vivo immunoadsorption. ASAIO J 1992;38:673-5 https://doi.org/10.1097/00002480-199207000-00122
  3. Manji RA, Manji JS, Koshal A, Korbutt GS, Rajotte RV. Human ABO blood group is important in survival and function of porcine working hearts. Am J Transplant 2003;3: 286-93 https://doi.org/10.1034/j.1600-6143.2003.00055.x
  4. Buhler L, Yamada K, Kitamura H, et al. Pig kidney transplantation in baboons: anti-Gal (alpha) 1-3Gal IgM alone is associated with acute humoral xenograft rejection and disseminated intravascular coagulation. Transplantation 2001; 72:1743-52 https://doi.org/10.1097/00007890-200112150-00007
  5. Teranishi K, Gollackner B, Buhler L, et al. Depletion of anti- gal antibodies in baboons by intravenous therapy with bovine serum albumin conjugated to gal oligosaccharides. Transplantation 2002;73:129-39 https://doi.org/10.1097/00007890-200201150-00024
  6. Gojo S, Harper D, Down J, Awwad M, Cooper DK. Differential expression of Galalpha1, 3Gal epitopes on fetal and adult porcine hematopoietic cells. Xenotransplantation 2002; 9:297-300 https://doi.org/10.1034/j.1399-3089.2002.01048.x
  7. Leight GS, Kirkman R, Rasmusen BA, et al. Transplantaion in miniature swine. III: effect of MSLA and A-O blood group matching on skin allograft survival. Tissue Antigens 1978; 12:65-74 https://doi.org/10.1111/j.1399-0039.1978.tb01301.x
  8. Zweibaum A, Bouhou E. Studies on digestive groups II Influence of the digestive group A system on skin allografts in rabbits. Transplantation 1973;15:294-7 https://doi.org/10.1097/00007890-197303000-00005
  9. Abdollahi A, Lord KA, Hoffman-Liebermann B, Liebermann D. Sequence and expression of a cDNA encoding MyD118: a novel myeloid differentiation primary response gene induced by multiple cytokines. Oncogene 1991;6:165-7
  10. Fornace AJ, Jackman J, Hollander MC, Hoffman- Liebermann B, Liebermann D. Genotoxic-stress-response genes and growth-arrest genes. gad, MyD, and other genes induced by treatments eliciting growth arrest. Ann N Y Acad Sci 1992;663:139-53
  11. Zhan Q, Antinore MJ, Wang XW, et al. Association with Cdc2 and inhibition of Cdc2/Cyclin B1 kinase activity by the p53- regulated protein Gadd45. Oncogene 1999;18:2892-900 https://doi.org/10.1038/sj.onc.1202667
  12. Smith ML, Ford JM, Hollander MC, et al. p53-mediated DNA repair responses to UV radiation: studies of mouse cell lacking p53, p21, and/or gadd45 genes. Mol Cell Biol 2000; 20:3705-14 https://doi.org/10.1128/MCB.20.10.3705-3714.2000
  13. Vairapandi M, Balliet AG, Fornace AJ, et al. The differentiation primary response gene MyD 118, related to GADD45, encodes for a nuclear protein which interacts with PCNA and p21WAF1/CIP1. Oncogene 1996;12:2579-94
  14. Zang N, Ahsan MH, Zhu L, Sambucetti LC, Purchio AF, west DB. $NF-_{\kappa}B$ and not the MAPK signaling pathway regulates $GADD45{\beta}$ expression during acute inflammation. J Biol Chem 2005;280:21400-8 https://doi.org/10.1074/jbc.M411952200
  15. Zazzeroni F, Papa S, Alicia AS, et al. Gadd45beta mediastes the protective effects of CD40 costimulation against Fas-induced apoptosis. Blood 2003;102:3270-9 https://doi.org/10.1182/blood-2003-03-0689
  16. Yoo JY, Ghiassi M, Jirmanova L, et al. Transforming growth $factor-{\beta}-induced$ apoptosis is mediasted by smad-dependent expression of $GADD45{\beta}$ through p38 activation. J Biol Chem 2003;44:43001-7
  17. De SE, Zazzaroni F, Papa S, et al. Induction of $gadd45{\beta}$ by $NF-kappaB$ downregulates pro-apoptotic JNK signaling. Nature 2001;15:308-13
  18. Collins T, Read MA, Neish AS, Whitley MZ, Thonos D, Maniatis T. Trnascriptional regulation of endothelial cell adhesion molecules: NF-kappa-B and cytokine-inducible enhancers. FASEB J 1995;9:899-909 https://doi.org/10.1096/fasebj.9.10.7542214
  19. Schneider A, Martin-Villalba A, Weih F, et al. $NF-_{\kappa}B$ is activated and promotes cell death in focal cerebral ischemia. Nat Med 1999;5:554-9 https://doi.org/10.1038/8432
  20. Byaert R, Fiers W. Molecular mechanism of tumor necrosis factor-induced cytotoxicity. What we do understand and what we do not. FEBS Lett 1994;340:9-16 https://doi.org/10.1016/0014-5793(94)80163-0
  21. Antwerp DJV, Martin SJ, Kafri T, Green DR, Verma IM. Suppression of TNF-a-induced apoptosis by $NF-_{\kappa}B$. Science 1996;274:787-9 https://doi.org/10.1126/science.274.5288.787
  22. Liston P, Roy N, Tamai K, et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996;379:349-53 https://doi.org/10.1038/379349a0
  23. Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J. $NF-_{\kappa}B-regulated$ X-chromosome-linked IAP gene expression protects endothelial cells from tumor necrosis factor-a-induced apoptosis. J Exp Med 1998;188:211-6 https://doi.org/10.1084/jem.188.1.211
  24. Maulik N, Goswami S, Galang N, Das DK. Differential regulation of Bcl-2, AP-1, and $NF-_{kappa}B$ on cardiomyocyte apoptosis during myocardial ischemic stress adaptation. FEBS Lett 1999;443:331-6 https://doi.org/10.1016/S0014-5793(98)01719-0
  25. De Moissac D, Zheng H, Kirschenbaum LA. Linkage of the BH4 domain of Bcl-2 and the $NF-_{\kappa}B$ signaling pathway for suppression of apoptosis. J Biol Chem 1999;274:29505-9 https://doi.org/10.1074/jbc.274.41.29505
  26. Geng YJ, Wu Q, Muszynski M, hansson GK, Libby P. Apoptosis of vascular smooth muscle cells induced by in vitro stimulation with interferon-r, tumor necrosis factor-a and interleukin-1b. Arterioscler Thromb Vasc Biol 1996; 16:19-27 https://doi.org/10.1161/01.ATV.16.1.19
  27. Lawrence R, Chang LJ, Siebenlist U, Bressler P, Sonenshein GE. Vascular smooth muscle cells express a constitutive $NF-_{/kappa}B-like$ activity. J Bilo Chem 1994;296:28913-8
  28. Erl W, Hansson GK, de Martin R, Draude G, Weber KS, Weber C. $NF-_{\kappa}B$ regulates induction of apoptosis and inhibition of apoptosis protein-1 expression in vascular smooth muscle cells. Circ Res 1999;84:668-77 https://doi.org/10.1161/01.RES.84.6.668
  29. Erl W, Weber C, Hansson GK. Pyrimidine dithiocarbamate- induced apoptosis depends on cell type, density, and the presence of Cu(2+) and Zn(2+). Am J Physilo 2000;278: C1116-25 https://doi.org/10.1152/ajpcell.2000.278.6.C1116
  30. Beg AA, Sha WC, Bronson RT, Ghosh S, Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of $NF-_{\kappa}B$. Nature 1995;376:167-70 https://doi.org/10.1038/376167a0