Synthesis of Novel Network Polyesters Containing Malonate Group in Main Chain and Their Fluorescence Image Patterning via Photodegradation

주사슬에 말로네이트기를 가지는 신규 폴리에스테르의 합성과 광분해 특성을 이용한 형광 이미지 패터닝

  • Jeong, Seon-Ju (Department of Polymer Science, Kyungpook National University) ;
  • Kwak, Gi-Seop (Department of Polymer Science, Kyungpook National University) ;
  • Jung, In-Tae (Department of Polymer Science, Kyungpook National University) ;
  • Lee, Dong-Ho (Department of Polymer Science, Kyungpook National University) ;
  • Roh, Hyung-Jin (Samyang Corp. Central R&D) ;
  • Yoon, Keun-Byoung (Department of Polymer Science, Kyungpook National University)
  • 정선주 (경북대학교 고분자공학과) ;
  • 곽기섭 (경북대학교 고분자공학과) ;
  • 정인태 (경북대학교 고분자공학과) ;
  • 이동호 (경북대학교 고분자공학과) ;
  • 노형진 ((주)삼양사 중앙연구소) ;
  • 윤근병 (경북대학교 고분자공학과)
  • Published : 2008.01.31

Abstract

Three types of network polyesters have been newly synthesized by a two-step condensation reaction by the various combination of several diols and diacids. When these polymer films were thermally treated at $240^{\circ}C$, they exhibited absorptions in a visible range despite the forbidden transition of carbonyl group. When excited at wavelengths above 330 nm, the polymers showed fluorescences in a wide visible range from blue to near yellow. These fluorescence phenomena are due to the formation of certain conjugated structures by the Knoevenagel type self-condensation under the high-temperature thermal treatment. These polymers showed significant difference in the thermal properties as a function of the degrees of chemical crosslinking. They also underwent photodegradation. Highly resolved, fluorescent image patterns were successfully obtained by the photodegradation of malonate group under a strong UV-light irradiation.

Diol과 diacid 단량체들의 다양한 조합으로 2단계 축합중합으로 가교구조를 가지는 세 종류의 신규 폴리에스테르를 새롭게 합성하였다. 이들 고분자 필름은 $240^{\circ}C$에서 수 시간 고온 열처리하면, 주사슬에 의한 금지 전이에도 불구하고, 가시영역에서 흡수를 나타내었으며 330 nm 이상의 파장에서 여기시키면 청색에서 근적외선에 이르는 넓은 범위에서 발광을 나타내었다. 신규 폴리에스테르의 발광 현상은 주사슬에 포함된 말로네이트기가 고온 열처리를 통해 자기축합 형태의 Knoevenagel 반응을 일으켜 분자 내 공역구조를 형성하기 때문이다. 또한 이들 고분자의 열적 특성은 가지화도 차이에 의한 화학적 가교정도에 따라 현저한 차이를 보였을 뿐 아니라 광분해 현상도 관찰되었다. 필름 상태에서 강한 자외선을 조사하여 말로네이트기의 분해반응을 유도하고, 이를 이용한 형광 이미지 패터닝을 수행한 결과, 고해상도의 이미지 패턴을 얻을 수 있었다.

Keywords

References

  1. H. Tsuji, Y. Echizen, and Y. Nishimura, Polym. Degrad. Stabil., 91, 1128 (2006) https://doi.org/10.1016/j.polymdegradstab.2005.07.007
  2. Y. Ikada and H. Tsuji, Macromol. Rapid. Commun., 21, 117 (2000) https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X
  3. S. H. Lee, Y. K. Han, Y. H. Kim, and S. H. Kim, J. Polym. Sci. ; Part A : Polym. Chem., 40, 567 (1998)
  4. G. Kwak and M. Fujiki, Macromolecules, 37, 2021 (2004) https://doi.org/10.1021/ma035679g
  5. G. Kwak, A. Takagi, and M. Fujiki, Macromolecules, 38, 69 (2005) https://doi.org/10.1021/ma0491558
  6. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, and A. J. Heeger, Nature, 357, 477 (1992) https://doi.org/10.1038/357477a0
  7. A. M. vekselman, C. Zhang, and G. D. Darling, Chem. Mater., 7, 850 (1995) https://doi.org/10.1021/cm00053a006
  8. J. M. Kim, T. E. Chang, J. H. Kang, K. H. Park, D. K. Han, and K. D. Ahn, Angew. Chem. Int. Ed., 39, 1780 (2000) https://doi.org/10.1002/(SICI)1521-3773(20000515)39:10<1780::AID-ANIE1780>3.0.CO;2-H
  9. Y. J. Park, Y. S. Kang, and C. Park, Eur. Polym. J., 41, 1002 (2005) https://doi.org/10.1016/j.eurpolymj.2004.11.022
  10. J. M. Kim, Macromol. Rapid Commun., 28, 1911 (2007)
  11. J. M. Kim, J. H. Kang, D. K. Han, C. W. Lee, and K. D. Ahn, Chem. Mater., 10, 2332 (1998) https://doi.org/10.1021/cm980395+
  12. S. Park, S. Kim, J. Seo, and S. Y. Park, Macromolecules, 38, 4557 (2005) https://doi.org/10.1021/ma050009r
  13. S. J. Lim, B. K. An, and S. Y. Park, Macromolecules, 38, 6236 (2005) https://doi.org/10.1021/ma0504163
  14. J. K. Lee, H. J. Kim, T. H. Kim, C. H. Lee, W. H. Park, J. Kim, and T. S. Lee, Macromolecules, 38, 9427 (2005) https://doi.org/10.1021/ma051112j
  15. G. Kwak, M. Fujiki, T. Sakaguchi, and T. Masuda, Macromolecules, 38, 319 (2006)
  16. S. K. Chae, H. P. Park, J. W. Yoon, C. H. Lee, D. J. Ahn, and J. M. Kim, Adv. Mater., 19, 521 (2007) https://doi.org/10.1002/adma.200602012
  17. K.-B. Yoon, S. Jeong, and G. Kwak, Macromol. Rapid Commun., 28, 1231 (2007) https://doi.org/10.1002/marc.200700134
  18. E. M. Arnett, S. Maroldo, S. L. Schilling, and J. A. Harrelson, J. Am. Chem. Soc., 106, 6759 (1984) https://doi.org/10.1021/ja00334a049
  19. G. Jones, Organic Reactions(New York), 15, 204 (1967)
  20. L. F. Tietze and U. Beifuss, in Comprehensive Organic Synthesis, B. M. Trost and I. Fleming, Eds., Pergamon Press, New York, Vol 2, p 341 (1991)
  21. T. Laue and A. Plagens, Named Organic Reactions, 2nd ed., John Wiley & Sons Publishers, England, p 176 (2005)
  22. M. Jayakannan and S. Ramakrishnan, J. Polym. Sci.; Part A: Polym. Chem., 38, 261 (2000) https://doi.org/10.1002/(SICI)1099-0518(20000101)38:1<261::AID-POLA31>3.0.CO;2-Z
  23. A. Lindstro and M. Hakkarainen. Biomacromolecules, 8, 1187 (2007) https://doi.org/10.1021/bm070001k
  24. E. Zagar, M. Huskic, and M. Zigon, Macromol. Chem. Phys., 208, 1379 (2007)
  25. J. Byun, H. L. Kim, M. J. Jin, and S. Choe, J. Korean Ind. Eng. Chem., 12, 218 (2001)
  26. F. -D. Kopink, M. Remmler, K. Mackenzie, M. Moder, and O. Wachsen, Polym. Degrad. Stabil., 53, 329 (1996) https://doi.org/10.1016/0141-3910(96)00102-4
  27. W. Zhao, Y. Yamamoto, and S. Tagawa, J. Polym. Sci.; Part A: Polym. Chem., 36, 3089 (1998) https://doi.org/10.1002/(SICI)1099-0518(199812)36:17<3089::AID-POLA10>3.0.CO;2-B
  28. Y. Aoyagi, K. Yamashita, and Y. Doi, Polym. Degrad. Stabil., 76, 53 (2002) https://doi.org/10.1016/S0141-3910(01)00265-8
  29. D. N. Bikiaris, K. Chissafis, K. M. para-skevopoulos, K. S. Triantafyllidis, and E. V. Antonakou, Polym. Degrad. Stabil., 92, 525 (2007) https://doi.org/10.1016/j.polymdegradstab.2007.01.022
  30. E. Ikada, J. Photopolym. Sci. Technol., 12, 251 (1999) https://doi.org/10.2494/photopolymer.12.251
  31. H. Tsuji, Y. Echizen, and Y. Nishimura, Polym. Degrad. Stabil., 91, 1128 (2006) https://doi.org/10.1016/j.polymdegradstab.2005.07.007
  32. D. T. McQuade, A. E. Pullen, and T. M. Swager, Chem. Rev., 100, 2537 (2000) https://doi.org/10.1021/cr9801014
  33. H. Tsuji, Polymer, 43, 1789 (2002) https://doi.org/10.1016/S0032-3861(01)00752-2
  34. H. Tsuji and Y. Ikada, Polym. Degrad. Stabil., 67, 179 (2000) https://doi.org/10.1016/S0141-3910(99)00111-1
  35. H. Tsuji and S. Miyauchi, Polym. Degrad. Stabil., 71, 415 (2001) https://doi.org/10.1016/S0141-3910(00)00191-9