Synthesis of Sulfonated Poly(styrene-co-DVB) Hyper Branched Cationic Exchange Resin and Its Properties

하이퍼브랜치 Poly(styrene-co-DVB) 설폰화 양이온교환 수지의 합성 및 특성

  • Baek, Ki-Wan (School of Applied Chemistry and Biological Engineering, College of Engineering, Chungnam National University) ;
  • Yeom, Bong-Yeol (Nonwovens Cooperative Research Center, North Carolina State University) ;
  • Hwang, Taek-Sung (School of Applied Chemistry and Biological Engineering, College of Engineering, Chungnam National University)
  • 백기완 (충남대학교 바이오응용화학부) ;
  • 염봉열 (노스케롤라이나 주립대학교 부직포 협력연구센터(NCRC)) ;
  • 황택성 (충남대학교 바이오응용화학부)
  • Published : 2008.01.31

Abstract

In this study, the hyper branched poly (styrene-co-divinylbenzene) (PSD) was synthesized by bulk polymerization and the cationic exchanger with high ion exchange capacity was prepared by sulfonation. The structure of hyper branched PSD ion exchanger was investigated by FT-IR, $^1H-NMR$ spectroscopy, and GPC analysis. The molecular weight, viscosity of hyper branched PSD increased with DVB content, which have the maximum values of 9410g/mol and 338 cP, respectively. And the reaction rate also increased with cross-linker content. As DVB content increased, the solubility of PSD decreased having the maximum value of 22 g with 0.1 mol% DVB. The water content and ion exchange capacity of the hyper branched PSD ion exchanger increased with the amount of sulfuric group. Their maximum values were 18.2% and 4.6 meq/g, respectively. The adsorption of copper and nickel ion was completed within 40 min.

본 연구는 벌크 중합을 이용하여 하이퍼브랜치 poly(styrene-co-divinylbenzene) (이하 PSD로 칭함)을 합성하고, 이를 설폰화하여 이온교환 용량이 큰 양이온 교환체를 합성하였다. 또한 FT-IR, $^1H-NMR$, 및 GPC 분석을 통하여 하이퍼브랜치 PSD 이온교환체의 분자량 및 구조 확인을 하였다. 하이퍼브랜치 PSD의 분자량과 점도는 DVB의 양이 증가함에 따라 모두 증가하였으며, 각각 최대값이 9410 g/mol과 338 cP로 나타났다. 또한, 가교제의 양이 증가함에 따라 반응속도가 증가하였으며, PSD의 용해도는 감소하였고, DVB 농도가 0.1 mlol%에서 용매 100 mL에 22g이 용해되었다. 또한, 하이퍼브랜치 PSD 이온교환체의 함수율과 이온교환 용량은 설폰 산기의 함량이 증가함에 따라 증가하였으며, 각각 최대 18.2%, 4.6 meq/g이었다. 구리 및 니켈에 대한 흡착이 40분 이내에 거의 100% 이루어졌다.

Keywords

References

  1. A. M. Rubel and J. M. Stencel, Fuel, 76, 521 (1997) https://doi.org/10.1016/S0016-2361(96)00221-9
  2. A. Chakrabarti, A. Mizuno, K. Shimizu, T. Matsuoka, and S. Furuta, IEEE T. Ind. Appl., 31, 500 (1994) https://doi.org/10.1109/28.382109
  3. Y. L. M. Creyghton, E. M. van Veldhuizen, and W. R. Rutgers, Springer-Verlag Pub. Co., New York, p 205 (1993)
  4. V. S. Soldatov, G. I. Sergeev, and R. V. Martsinkevich, Dock. Akad. Nauk, USSR, 28, 1009 (1984)
  5. V. S. Soldatov, Izv.-Akad.-Nauk-Arm.-SSR -Ser.-Fiz., 6, 39 (1982)
  6. J. S. Park, Y. C. Nho, and T. S. Hwang, Polymer(Korea), 21, 701 (1997)
  7. D. K. Kim, J. K. Lim, and W. G. Kim, J. Korean Ind. Eng. Chem., 16, 342 (2005)
  8. Y. Kim, J. Polym. Sci.; Part A: Polym. Chem., 36, 1685 (1998) https://doi.org/10.1002/(SICI)1099-0518(199808)36:11<1685::AID-POLA1>3.0.CO;2-R
  9. B. Voit, J. Polym. Sci.; Part A: Polym. Chem., 38, 2505 (2000) https://doi.org/10.1002/1099-0518(20000715)38:14<2505::AID-POLA10>3.0.CO;2-8
  10. D. K. Kim, J. K. Lim, W. G. Kim, and J. R. Haw J. Korean Ind. Eng. Chem., 16, 93 (2005)
  11. B. Gupta, et al., J. Membrane Sci., 81, 89 (1993) https://doi.org/10.1016/0376-7388(93)85033-S
  12. B. S. Lee, K. H. Lee, D. R. Lee, B. G. Park, and H. Y. Kim, Journal of the Korean Fiber Society, 40, 4 (2003)
  13. L. Zheng, A. Feng Xie, and J. T. Lean, Macromolecules, 37, 9954 (2004) https://doi.org/10.1021/ma048499v
  14. A. M. Lazarin, C. A. Borgo, Y. Gushikem, and Y. V. Kholin, Anal. Chim. Acta, 477, 305 (2003) https://doi.org/10.1016/S0003-2670(02)01420-4
  15. D. C. Szlag, and N. J. Wolf, Clean Products Processes, 1, 117 (1999)
  16. A. Seubert and A. Klingenberg, J. Chromatogr. A, 782, 149 (2003) https://doi.org/10.1016/S0021-9673(97)00488-3
  17. S. Camerlynck, P. A. G. Cormark, and D. C. Sherrindton, Eur. Polym. J., 42, 3286 (2006) https://doi.org/10.1016/j.eurpolymj.2006.08.019
  18. I. H. Cho, K. W. Baek, Y. M. Lim, Y. C. Nho, and T. S. Hwang, Polymer(Korea), 31, 239 (2007)