Polysiloxanes Containing Alkyl Side Groups: Synthesis and Mesomorphic Behavior

  • Kim, Byoung-Gak (Department of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Moon, Jin-Kyung (Department of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Sohn, Eun-Ho (Department of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Lee, Jong-Chan (Department of Chemical and Biological Engineering, College of Engineering, Seoul National University) ;
  • Yeo, Jong-Kee (LG Chem. Ltd.)
  • Published : 2008.01.31

Abstract

A series of polysiloxanes containing alkylsulfonyl side groups were synthesized using a polymer analogous reaction beginning from poly(methylhydrosiloxane) and the corresponding olefins. These polymers showed a mesomorphic behavior with smectic liquid crystalline phases. The chemical and physical properties of these polymers were examined using nuclear magnetic resonance spectroscopy, gel permeation chromatography, differential scanning calorimetry, optical polarizing microscopy, and X-ray diffraction.

Keywords

References

  1. T.-S. Chung, Thermotropic Liquid Crystal Polymers: Thin-film Polymerization, Characterization, Blends, and Applications, Technomic Publishing Company, 2001, Chap. 1.
  2. J.-I. Jin and C.-S. Kang, Prog. Polym. Sci., 22, 937 (1997). https://doi.org/10.1016/S0079-6700(97)00013-0
  3. J. S. Derek, in Liquid Crystal Polymers: From Structures to Applications, A. A. Collyer, Ed., Elsevier Applied Science, London and New York, 1992, Chap. 7-8.
  4. Y. K. Godovsky, I. I. Mamaeva, N. N. Makarova, V. S. Papkov, and N. N. Kuzmin, Makromol. Chem. Rapid Commun., 6, 797 (1985). https://doi.org/10.1002/marc.1985.030061202
  5. G. J. J. Out, A. A. Turetskii, M. Mšller, and D. Oelfin, Macromolecules, 27, 3310 (1994). https://doi.org/10.1021/ma00090a026
  6. P. B. Rim, H. A. A. Rasoul, S. M. Hurley, E. B. Orler, and K. M. Scholsky, Macromolecules, 20, 208 (1987). https://doi.org/10.1021/ma00167a037
  7. T. Zhang, M. H. Litt, and C. E. Rogers, J. Polym. Sci.; Part A: Polym. Chem., 32, 2291 (1994). https://doi.org/10.1002/pola.1994.080321211
  8. J.-C. Lee, M. H. Litt, and C. E. Rogers, Macromolecules, 31, 2440 (1998). https://doi.org/10.1021/ma971361a
  9. M. M. Doeff and E. Lindner, Macromolecules, 22, 2951 (1989). https://doi.org/10.1021/ma00197a013
  10. Y. Kawakami, Y. Li, Y. Liu, M. Seino, C. Pakjamsai, M. Oishi, Y. H. Cho, and I. Imae, Macromol. Res., 12, 156 (2004). https://doi.org/10.1007/BF03218384
  11. A. A. Thorpe, T. G. Nevell, and J. Tsibouklis, Appl. Surf. Sci., 137, 1 (1999). https://doi.org/10.1016/S0169-4332(98)00532-7
  12. S. H. Lee, W. S. Jahng, K. H. Park, N. J. Kim, W.-J. Joo, and D. H. Choi, Macromol. Res., 11, 431 (2003). https://doi.org/10.1007/BF03218972
  13. B. Boutevin, F. Guida-Pietrasanta, and A. Ratsimihety, J. Polym. Sci.; Part A: Polym. Chem., 38, 3722 (2000). https://doi.org/10.1002/1099-0518(20001015)38:20<3722::AID-POLA20>3.0.CO;2-C
  14. Y. Furukawa and M. Kotera, J. Polym. Sci.; Part A: Polym. Chem., 40, 3120 (2002). https://doi.org/10.1002/pola.10396
  15. S. Y. Pyun and W. G. Kim, Macromol. Res., 11, 202 (2003). https://doi.org/10.1007/BF03218354
  16. M. A. Brook, Silicon in Organic, Organometallic, and Polymer Chemistry, A Wiley-Interscience Publication, 1999, pp 404-412.
  17. C. B. McArdle, Side Chain Liquid Crystal Polymers, Blackie, Chapman and Hall, New York, 1989, pp 110-114.
  18. J. M. Yu, D. Teyssie, and S. Boileau, J. Polym. Sci.; Part A: Polym. Chem., 31, 2373 (1993). https://doi.org/10.1002/pola.1993.080310920
  19. V. Srinivasan, E. I. Stiefel, A. Elsberry, and R. A. Walton, J. Am. Chem. Soc., 101, 2611 (1979). https://doi.org/10.1021/ja00504a018
  20. L. H. Sperling, Introduction to Physical Polymer Science, A Wiley-Interscience Publication, 1992, Chapter 3.
  21. J.-C. Lee, S.-H. Han, S.-H. Cha, S. Y. Park, and B. L. Farmer, Polymer, 44, 7413 (2003). https://doi.org/10.1016/j.polymer.2003.09.030
  22. A. C. Fantoni and G. Corbelli, J. Mol. Spec., 164, 319 (1994). https://doi.org/10.1006/jmsp.1994.1077
  23. N. A. Plate and V. P. Shibaev, J. Polymer. Sci.; Macromol. Rev., 8, 117 (1974). https://doi.org/10.1002/pol.1974.230080103
  24. F. Andruzzi, D. Lupinacci, and P. L. Magagnini, Macromolecules, 13, 15 (1980). https://doi.org/10.1021/ma60073a003
  25. K. Yokota, T. Kougo, and T. Hirabayashi, Polym. J., 15, 891 (1983). https://doi.org/10.1295/polymj.15.891
  26. Y. Yuki, H. Kunisada, and Y. Miyake, Polym. J., 23, 939 (1991). https://doi.org/10.1295/polymj.23.939
  27. M. Ballauff and G. F. Schmit, Mol. Cryst. Liq. Cryst., 147, 163 (1987). https://doi.org/10.1080/00268948708084632
  28. J. M. Rodriguez-Parada, R. Duran, and G. Wegner, Macromolecules, 22, 2507 (1989). https://doi.org/10.1021/ma00195a087
  29. T.-M. Chen, Y.-F. Wang, M. Kitamura, T. Nakawa, and I. Sakurai, J. Polym. Sci.; Polym. Chem., 34, 1155 (1996). https://doi.org/10.1002/(SICI)1099-0518(199605)34:7<1155::AID-POLA1>3.0.CO;2-2
  30. T. Takahashi, T. Kimura, and K. Sakurai, Polymer, 40, 5939 (1999). https://doi.org/10.1016/S0032-3861(98)00797-6
  31. B. Wunderlich, Thermochim. Acta, 37, 340 (1999).
  32. S.-Y. Park, T. Zhang, L. V. Interrante, and B. L. Farmer, Polymer, 43, 5169 (2002). https://doi.org/10.1016/S0032-3861(02)00195-7
  33. S. Maisonnier, J.-C. Favier, M. Masure, and P. HZmery, Polym. Int., 48, 159 (1999). https://doi.org/10.1002/(SICI)1097-0126(199903)48:3<159::AID-PI31>3.0.CO;2-G
  34. P. B. Rim, Polym. Commun., 27, 199 (1986).
  35. E. F. Jordon, D. W. Feldeisen, and A. N. Wrigley, J. Polym. Sci.; Polym. Chem., 9, 1835 (1971). https://doi.org/10.1002/pol.1971.150090705
  36. V. V. Volkov, N. A. Platé, A. Takahara, T. Kajiyama, N. Amaya, and Y. Murata, Polymer, 33, 1316 (1992). https://doi.org/10.1016/0032-3861(92)90780-Z