Thermally Stable Photoreactive Polymers as a Color Filter Resist Bearing Acrylate and Cinnamate Double Bonds

  • Cho, Seung-Hyun (Polymer Technology Institute, Sungkyunkwan University) ;
  • Lim, Hyun-Soon (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Jeon, Byung-Kuk (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Ko, Jung-Min (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Lee, Jun-Young (Department of Chemical Engineering, Sungkyunkwan University) ;
  • Ki, Whan-Gun (Department of Applied Chemistry, Seokyeong University)
  • Published : 2008.01.31

Abstract

Photoreactive polymers as a color filter resist containing both photoreactive acrylate and cinnamate double bonds were synthesized usin two step reactions. The chemical structures of the synthesized polymers were confirmed by $^1H$-NMR and FT-IR spectroscopy. The photoreactive polymers were quite soluble in most common organic solvents and produced excellent quality thin films by spin-coating. The photocuring kinetics of the acrylate and cinnamate double bonds were examined by FT-IR and UV- Vis spectroscopy, which confirmed the excellent photoreactivity of both the acrylate and cinnamate double bonds in the polymers. Upon UV irradiation, photocuring was almost completed within approximately 5 min, irrespective of the type of the prepolymers. The polymers also exhibited superior thermal stability, showing little change in transmittance in the visible region even after heating to $250^{\circ}C$ for one hour. Photolithographic micropatterns could be obtained with a resolution of a few microns.

Keywords

References

  1. S. L. Hsu and W. Chen, Polymer, 43, 6743 (2002). https://doi.org/10.1016/S0032-3861(02)00635-3
  2. E. Leclerc, K. S. Furukawa, F. Miyata, Y. Sakai, T. Ushida, and T. Fujii, Biomaterials, 25, 4683 (2004). https://doi.org/10.1016/j.biomaterials.2003.10.060
  3. T. Kim, J. Chang, J. Choi, and W. Kim, Macromol. Res., 13, 545 (2005) https://doi.org/10.1007/BF03218495
  4. R. Mahy, B. Bouammali, A. Oulmidi, A. Challioui, D. Derouet, and J. C. Brosse, Eur. Polym. J., 42, 2389 (2006). https://doi.org/10.1016/j.eurpolymj.2006.05.031
  5. A. Miniewicz, J. Mysliwiec, F. Kajzar, and J. Parka, Opt. Mat., 28, 1389 (2006). https://doi.org/10.1016/j.optmat.2005.08.020
  6. S. Nam, S. Kang, and J. Chang, Macromol. Res., 15, 74 (2007). https://doi.org/10.1007/BF03218755
  7. H. Koo, M. Chen, and P. Pan, Thin Solid Films, 515, 896 (2006). https://doi.org/10.1016/j.tsf.2006.07.159
  8. R. W. Sabnis, Displays, 20, 119 (1999). https://doi.org/10.1016/S0141-9382(99)00013-X
  9. E. Reichmanis, O. Nalamasu, F. M. Houlihan, and A. E. Novembre, Polym. Int., 48, 1053 (1999). https://doi.org/10.1002/(SICI)1097-0126(199910)48:10<1053::AID-PI268>3.0.CO;2-T
  10. G. Kwak, J. Choi, K. Seo, L. Park, S. Hyun, and W. Kim, Chem. Mater., 19, 2898 (2007). https://doi.org/10.1021/cm062861y
  11. R. Balaji, D. Grande, and S. Nanjundan, Polymer, 45, 1089 (2004). https://doi.org/10.1016/j.polymer.2003.12.026
  12. D. Choi and S. Oh, Eur. Polym. J., 38, 1559 (2002). https://doi.org/10.1016/S0014-3057(02)00038-1
  13. H. Allcock and F. Lampe, Contemporary Polymer Chemistry, 2nd Ed., Prentice-Hall, Singapore, 1992.
  14. T. Scherzer, J. Polym. Sci.; Part A: Polym. Chem., 42, 894 (2004). https://doi.org/10.1002/pola.11039
  15. C. Decker and K. Moussa, J. Polym. Sci.; Part A: Polym. Chem., 25, 739 (1987). https://doi.org/10.1002/pola.1987.080250227
  16. C. Decker, R. Vataj, and A. Louati, Prog. Org. Coat., 50, 263 (2004). https://doi.org/10.1016/j.porgcoat.2004.03.005
  17. D. K. Seo, H. S. Lim, J. Y. Lee, and W. G. Kim, Mol. Cryst. Liq. Cryst., 445, 323/[613] (2006).